Nav: Home

The genetics of blood: A global perspective

September 04, 2020

What's the risk of different human populations to develop a disease? To find out, a team led by Université de Montréal professor Guillaume Lettre created an international consortium to study the blood of hundreds of thousands of people worldwide.

In one of the largest studies of its kind, published today in Cell, close to 750,000 participants from five major populations -- European, African, Hispanic, East Asian and South Asian -- were tested to see the effect of genetic mutations on characteristics in their blood.

These characteristics include such things as hemoglobin concentration and platelet counts.

"Each human population is subject to different environments," said Lettre, a researcher at the Montreal Heart Institute.

"Over thousands of years," he said, "these environmental pressures have resulted in the progressive appearance of variations in DNA, called genetic mutations, which can influence our physical characteristics, such as skin size or color, but also our risk of getting certain diseases."

He added: "This observation (of how the environment affects how people's appearance and health vary in different parts of the world) represents the cornerstone of the theory of evolution by natural selection proposed by Charles Darwin in 1859."

The consortium founded by Lettre and his colleagues chose to study 15 characteristics of blood cells because previous studies had already uncovered mutations whose consequences were limited to certain populations.

45 million genetic mutations

By testing more than 45 million genetic variations in each participant, Lettre and his collaborators have found more than 5,000 mutations in human DNA that affect the blood characteristics of populations around the world.

Done in conjunction with another study focusing exclusively on individuals of European origin, the new study shows that the vast majority of mutations associated with blood cells were common to all five major population groups.

But aside from these, the researchers also found about 100 mutations whose effect was restricted to certain populations and which, it turns out, are not found in people of European descent.

For example, in individuals of South Asian origin, the researchers identified a mutation in the interleukin-7 gene that stimulates the secretion of this molecule and thus increases the levels of lymphocytes (a type of white blood cell in the immune system) circulating in their blood.

"Of course, this kind of mutation can affect the health of people of South Asian origin," Lettre noted. "It's thought that this mutation could influence their capacity to resist certain infections or develop diseases like blood cancer."

However, he cautioned, "these are, at present, only hypotheses, as researchers do not have the capacity to test them, given the immense costs and the difficulty of finding participants for this type of study."

Improving ways of predicting

By comparing the genetic results obtained in each population, the researchers were able to prioritize certain genes that appear to have an overall effect on blood cell production.

This will make it possible, over the long term, to improve ways of predicting the risk of suffering from certain diseases and to develop new, more effective treatments.

Here again, however, major investments in research will be required to analyze the consequences of these mutations on the health of these population groups.

Another major obstacle will be to convince researchers how important it is for all population groups globally to be included in these types of genetic studies.

"Despite the size of our study, the vast majority of participants -- about 560,000 out of 740,000 individuals -- were of European origin," Lettre noted. "This necessarily introduces a bias into the study."

In the future, he said, "we hope to work with populations that have been little studied so far -- for example, East African populations or indigenous peoples -- in order to shed light on new genes that regulate blood cells."

One thing is clear, he concluded: in order to better understand human diseases and to ensure that everyone, regardless of ethnic origin, is able to benefit from advances in genetics and precision medicine, diseases will have to be studied in all populations worldwide.
About this study

The article "Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 individuals from 5 global populations", by Ming-Huei Chen, Laura M. Raffield, Abdou Mousas et al, was published Sept. 3, 2020 in Cell. The study was funded by the Canadian Institutes of Health Research.

University of Montreal

Related Genetics Articles:

The genetics of blood: A global perspective
To better understand the properties of blood cells, an international team led by UdeM's Guillaume Lettre has been examining variations in the DNA of 746,667 people worldwide.
Turning to genetics to treat little hearts
Researchers makes a breakthrough in understanding the mechanisms of a common congenital heart disease.
New drugs more likely to be approved if backed up by genetics
A new drug candidate is more likely to be approved for use if it targets a gene known to be linked to the disease; a finding that can help pharmaceutical companies to focus their drug development efforts.
Mapping millet genetics
New DNA sequences will aid in the development of improved millet varieties
Genetics to feed the world
A study, published in Nature Genetics, demonstrated the effectiveness of the technology known as genomic selection in a wheat improvement program.
The genetics of cancer
A research team has identified a new circular RNA (ribonucleic acid) that increases tumor activity in soft tissue and connective tissue tumors.
New results on fungal genetics
An international team of researchers has found unusual genetic features in fungi of the order Trichosporonales.
Mouse genetics influences the microbiome more than environment
Genetics has a greater impact on the microbiome than maternal birth environment, at least in mice, according to a study published this week in Applied and Environmental Microbiology.
New insights into genetics of fly longevity
Alexey Moskalev, Ph.D., Head of the Laboratory of Molecular Radiobiology and Gerontology Institute of Biology, and co-authors from the Institute of biology of Komi Science Center of RAS, Engelgard's Institute of molecular biology, involved in the study of the aging mechanisms and longevity of model animals announce the publication of a scientific article titled: 'The Neuronal Overexpression of Gclc in Drosophila melanogaster Induces Life Extension With Longevity-Associated Transcriptomic Changes in the Thorax' in Frontiers in Genetics - a leading open science platform.
Some personal beliefs and morals may stem from genetics
Penn State researchers found that while parents can help encourage their children to develop into responsible, conscientious adults, there is an underlying genetic factor that influences these traits, as well.
More Genetics News and Genetics Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: IRL Online
Original broadcast date: March 20, 2020. Our online lives are now entirely interwoven with our real lives. But the laws that govern real life don't apply online. This hour, TED speakers explore rules to navigate this vast virtual space.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

There are so many ways to fall–in love, asleep, even flat on your face. This hour, Radiolab dives into stories of great falls.  We jump into a black hole, take a trip over Niagara Falls, upend some myths about falling cats, and plunge into our favorite songs about falling. Support Radiolab by becoming a member today at