Nav: Home

Air pollution renders flower odors unattractive to moths

September 04, 2020

A team of researchers from the Max Planck Institute for Chemical Ecology in Jena, Germany, and the University of Virginia, USA, has studied the impact of high ozone air pollution on the chemical communication between flowers and pollinators. They showed that tobacco hawkmoths lost attraction to the scent of their preferred flowers when that scent had been altered by ozone. This oxidizing pollutant thus disturbs the interaction between a plant and its pollinator, a relationship that has evolved over millions of years. However, when given the chance, hawkmoths quickly learn that an unpleasantly polluted scent may lead to nutritious nectar (Journal of Chemical Ecology, September 2020, DOI: 10.1007/s10886-020-01211-4).

Pollination in the Anthropocene

Pollination is a critical ecosystem service, one that is performed mainly by insects. Flowers attract insects using floral scents, which are chemical signals that the pollinators can have an innate preference for. This preference is the result of the co-evolutionary relationship between flowers and their pollinators that has evolved over millions of years.

For about 20 years, the term "Anthropocene" has been used in the scientific community to refer to the geological epoch in which humans are responsible for many changes in biological and atmospheric processes. However, until recently, little has been known about the effects of anthropogenic climate change and atmospheric pollution on natural environmental odors that drive chemical communication between organisms.

A team of researchers from the Max Planck Institute for Chemical Ecology and the University of Virginia has investigated whether human-driven ozone pollution in the air influences the attraction of a pollinating moth to the scent of one of their favorite flowers. Ozone is an oxidant, a highly reactive chemical and pollutant known to cause respiratory diseases in humans. Now, ozone is also thought to change the floral scents that flowers emit to attract their pollinators.

For their experiments, the scientists used the tobacco hawkmoth Manduca sexta. "The hawkmoth Manduca sexta is the perfect model for our study. Although it is highly attracted by flower odors, it also uses its visual system to locate flowers. Flowers that usually attract hawkmoth often share specific compounds in their blend and are visually very conspicuous due to their bright white color," says study leader Markus Knaden, who heads a research group in the Department of Evolutionary Neuroethology at the Max Planck Institute.

The research team first determined the exact compositions of the flower odors - with and without increased ozone content - and the respective concentrations of individual odor components using gas chromatography. For the ozone-altered odors, the researchers used ozone concentrations that can be measured on hot days in the natural habitat of tobacco hawkmoths. They tested the responses of the moths in behavioral assays in a wind tunnel, allowing the insect to investigate both the original floral odor and to the ozone-altered floral odor.

"We were surprised, even shocked, that the innate attraction to the odor of tobacco flowers was completely lost in the presence of increased ozone levels," said Knaden, describing what was observed during the experiments.

Tobacco hawkmoths are able to learn

The question remained whether ozone in the air would spoil the appetite of hungry and foraging tobacco hawkmoths, or whether it would prevent insects from finding their food source. Would insects be able to figure out that even polluted flower odors can offer rewards? To answer this question, researchers tested whether tobacco hawkmoths could learn to accept an initially unattractive scent as a food cue if they smelled it while simultaneously being offered a sugar solution reward. The researchers assessed several different ways in which the moth could learn to recognize flowers based on the ozone-altered floral scent. This was critical to relating these experiments to real-world learning. In the real world, a floral scent only becomes ozone-altered as it moves downwind of the flower and mixes with ozone. To see if moths could learn ozone-altered floral scents even when they are decoupled from the sugar reward at the flower, the researchers developed an experiment where the moth had to follow the ozone-altered odor to the flower, but were presented with the original scent at the flower containing the sugar reward.

"While we anticipated that Manduca sexta could learn new floral scents and hoped that they would be able to learn the polluted floral scent of their host flower, we were amazed to see that Manduca sexta could learn the polluted floral blend in a number of different ways, including learning a polluted scent that was decoupled from a sugar reward. This type of learning, which we were surprised to find in Manduca sexta, could be very important in insects' ability to use learning to cope with their rapidly changing environments," says first author Brynn Cook from the University of Virginia. What is especially noteworthy and pertinent about this kind of responsiveness to a changing environment is that it occurs in real time and not over evolutionary timescales.

Learning ability of Manduca sexta is not an all-clear

Although the study shows that tobacco hawkmoths can learn to rely on ozone-altered and initially unattractive plumes to recognize their flowers, air pollution still poses a serious risk to pollination and pollinators. "Learning may be key to insects recognizing their host plants in polluted environments, but one of the major questions remaining from our study is whether pollinators will be able to find their flowers in the first place. Without initially recognizing smells, will pollinators only have visual cues to help them locate host flowers in order to learn the pollution-altered floral scent? Another important aspect to consider is that other pollinators may not have the same facility to learn new smells that Manduca sexta has. Specialist pollinators, for instance, may not have that flexibility in learning. Our study is just a starting point. Field studies are going to be critical to understanding which flowers and insects are most affected by which pollutants, and likely why," says Cook.

Air pollution and climate change have far-reaching consequences for our ecosystem; by no means have all of these been studied and understood. For example, we still know little about the impact of atmospheric changes on the chemical communication between plants and insects. Not only are plant odors altered, but also the sex pheromone female insects use to attract males. Atmospheric changes have the potential to cause alterations in pheromones that could lead to mating failure. Insect mortality has risen dramatically in recent years, and researchers worldwide are searching for the causes. Since 2020, the Max Planck Center next Generation Insect Chemical Ecology, a cooperation between the Max Planck Society and two Swedish universities in which the Max Planck Institute for Chemical Ecology and the co-authors of the study, Bill Hansson and Markus Knaden, play a major role, has been dedicated to this field of research.
-end-
Original publication:

Cook, B., Haverkamp, A., Hansson, B.S., Roulston, T., Lerdau, M., Knaden, M. (2020). Pollination in the Anthropocene: a Moth can Learn Ozone-altered Floral Blends, Journal of Chemical Ecology, DOI: 10.1007/s10886-020-01211-4

https://doi.org/10.1007/s10886-020-01211-4

Further Information:

Dr. Markus Knaden, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany, Tel. +49 3641 57 1421, E-Mail: mknaden [at] ice.mpg.de

Download of videos and high-resolution photos via http://www.ice.mpg.de/ext/downloads2020.html

Max Planck Institute for Chemical Ecology

Related Climate Change Articles:

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.
Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.