LHC switch-on fears are completely unfounded

September 05, 2008

A new report published on Friday, 5 September, provides the most comprehensive evidence available to confirm that the Large Hadron Collider (LHC)'s switch-on, due on Wednesday next week, poses no threat to mankind. Nature's own cosmic rays regularly produce more powerful particle collisions than those planned within the LHC, which will enable nature's laws to be studied in controlled experiments.

The LHC Safety Assessment Group have reviewed and updated a study first completed in 2003, which dispels fears of universe-gobbling black holes and of other possibly dangerous new forms of matter, and confirms that the switch-on will be completely safe.

The report, 'Review of the Safety of LHC Collisions', published in IOP Publishing's Journal of Physics G: Nuclear and Particle Physics, proves that if particle collisions at the LHC had the power to destroy the Earth, we would never have been given the chance to exist, because regular interactions with more energetic cosmic rays would already have destroyed the Earth or other astronomical bodies.

The Safety Assessment Group writes, "Nature has already conducted the equivalent of about a hundred thousand LHC experimental programmes on Earth - and the planet still exists."

The Safety Assessment Group compares the rates of cosmic rays that bombard Earth, other planets in our solar system, the Sun and all the other stars in our universe itself to show that hypothetical black holes or strangelets, that have raised fears in some, will in fact pose no threat.

The report also concludes that, since cosmic-ray collisions are more energetic than those in the LHC, but are incapable of producing vacuum bubbles or dangerous magnetic monopoles, we should not fear their creation by the LHC.

LHC collisions will differ from cosmic-ray collisions in that any exotic particles created will have lower velocities, but the Safety Assessment Group shows that even fast-moving black holes produced by cosmic rays would have stopped inside the Earth or other astronomical bodies. Their existence proves that any such black holes could not gobble matter at a risky rate.

As the Safety Assessment Group writes, "Each collision of a pair of protons in the LHC will release an amount of energy comparable to that of two colliding mosquitoes, so any black hole produced would be much smaller than those known to astrophysicists." They conclude that such microscopic black holes could not grow dangerously.

As for the equally hypothetical strangelets, the review uses recent experimental measurements at the Brookhaven National Laboratory's Relativistic Heavy-Ion Collider, New York, to prove that they will not be produced during collisions in the LHC.

IOP Publishing

Related Black Holes Articles from Brightsurf:

The black hole always chirps twice: New clues deciphering the shape of black holes
A team of gravitational-wave scientists led by the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) reveal that when two black holes collide and merge, the remnant black hole 'chirps' not once, but multiple times, emitting gravitational waves--intense ripples in the fabric space and time--that inform us about its shape.

Black holes? They are like a hologram
Spherical, smooth and simple according to the theory of relativity, or extremely complex and full of information as, according to quantum laws, Stephen Hawking used to say?

Under pressure, black holes feast
A new, Yale-led study shows that some supermassive black holes actually thrive under pressure.

Staining cycles with black holes
In the treatment of tumors, microenvironment plays an important role.

Black holes sometimes behave like conventional quantum systems
A group of Skoltech researchers led by Professor Anatoly Dymarsky have studied the emergence of generalized thermal ensembles in quantum systems with additional symmetries.

Scientists may have discovered whole new class of black holes
New research shows that astronomers' search for black holes might have been missing an entire class of black holes that they didn't know existed.

Are black holes made of dark energy?
Two University of Hawaii at Manoa researchers have identified and corrected a subtle error that was made when applying Einstein's equations to model the growth of the universe.

Telescopes in space for even sharper images of black holes
Astronomers have just managed to take the first image of a black hole, and now the next challenge facing them is how to take even sharper images, so that Einstein's Theory of General Relativity can be tested.

Can entangled qubits be used to probe black holes?
Information escapes from black holes via Hawking radiation, so it should be possible to capture it and use it to reconstruct what fell in: if given time longer than the age of the universe.

How black holes power plasma jets
Cosmic robbery powers the jets streaming from a black hole, new simulations reveal.

Read More: Black Holes News and Black Holes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.