Illinois biologists and bioinformaticians unite to explore the origins of social behavior

September 05, 2013

A new $3 million grant from the Simons Foundation to the Institute for Genomic Biology (IGB) at the University of Illinois will fund a multidisciplinary collaborative effort to search for similarities in the ways that the brains of many different species, including our own, produce social behavior.

"Our goal," said Principal Investigator Lisa Stubbs, "is to tie the truths we extract from each species together, into a fundamental model of how animal brains respond to social stimulus." Stubbs is a Professor of Cell and Developmental Biology.

An animal's success in nature depends in part on its ability to navigate social situations -- to find a mate, defend a territory, or work with others to obtain a meal. Social interactions are also crucial for humans, not only for survival, but for the exploration of space or the complex systems within our own bodies. There is great variation in the structure of the social interactions of different species. These interactions can often be grouped into the same broad categories -- aggression, mate selection, care of young -- but the details vary widely.

Why do investigators in the Simon-funded project believe that diverse animal species, even humans, may share molecular mechanisms that direct sociality? Inspiration for the project comes from several decades of highly successful research on the molecular mechanisms that guide development, which revealed an evolutionarily conserved genetic "toolkit" that directs development of common structures, such as body segments and appendages.

Researchers will take advantage of the shared categories of social interactions among species to ask whether there are also shared gene actions that guide social behavior. The study will initially focus on the brain genomic response to aggressive social encounters in honey bees, mice, and stickleback fish, three organisms with varied and well-studied social behaviors.

In the study, individual bees, mice, or fish will be exposed to a same-species territorial intruder; brain gene expression will then be quantified and compared to that of untreated control individuals. Similarities in the molecular response within the brains of all three species would suggest that the social behaviors of each, although quite distinct, may have evolved from the traits of an ancient common ancestor. The discovery of such an ancient origin of the molecular basis of social behaviors would be a major evolutionary insight.

"We are especially excited about how conserved networks of genes are reused, and reshaped, throughout evolution," says Stubbs.

It is possible that some of the same genes, or genes with similar functionality, will be responsive to social stimuli in all three species. Because of the known complexity of brain genomic responses to behavior, however, researchers will probably need to look for a different type of similarity. To do this, they will develop sophisticated analyses that take into account experimental data, along with prior knowledge about how genes are regulated, to produce a model of how gene activity is coordinated after a social encounter. These models, called gene regulatory networks, will be developed for the brain genomic response to aggression in mice, fish and bees.

A novel and valuable aspect of the study will be the innovation of new computational methods that allow the comparison of gene regulatory networks of different species. These novel computational methods will enable researchers to detect conservation of molecular mechanisms on a yet-unexplored level of analysis, the level of gene regulatory networks. Discovering deeply conserved mechanisms of social response will also further efforts to understand human brain function and social behavior.
The project arose naturally from the varied areas of strength and common interests of the co-investigators, Associate Professor of Animal Biology Alison Bell, Assistant Professor of Bioengineering Jian Ma, Professor of Physics Yoshi Oono, IGB Director and Professor of Entomology Gene Robinson, Associate Professor of Computer Science Saurabh Sinha, and Associate Professor of Cell and Developmental Biology Fei Wang, who are all part of the Gene Networks in Neural & Developmental Plasticity research team at the IGB. Graduate students Charles Blatti, Abbas Bukhari, Derek Caetano-Anolles, Laura Sloofman, Joe Troy, Annie Weisner, and Yang Zhang, as well as postdoctoral fellows Clare Rittschof, Hagai Shpigler, Matt Mcneill, former Institute for Genomic Biology Fellow Qiuhao Qu and current Fellow Ken Yokoyama will also contribute to the project. Drs. Huimin Zhang and Amy Cash-Ahmed will oversee the molecular work.

For the complete feature article, please visit

Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

Related Behavior Articles from Brightsurf:

Variety in the migratory behavior of blackcaps
The birds have variable migration strategies.

Fishing for a theory of emergent behavior
Researchers at the University of Tsukuba quantified the collective action of small schools of fish using information theory.

How synaptic changes translate to behavior changes
Learning changes behavior by altering many connections between brain cells in a variety of ways all at the same time, according to a study of sea slugs recently published in JNeurosci.

I won't have what he's having: The brain and socially motivated behavior
Monkeys devalue rewards when they anticipate that another monkey will get them instead.

Unlocking animal behavior through motion
Using physics to study different types of animal motion, such as burrowing worms or flying flocks, can reveal how animals behave in different settings.

AI to help monitor behavior
Algorithms based on artificial intelligence do better at supporting educational and clinical decision-making, according to a new study.

Increasing opportunities for sustainable behavior
To mitigate climate change and safeguard ecosystems, we need to make drastic changes in our consumption and transport behaviors.

Predicting a protein's behavior from its appearance
Researchers at EPFL have developed a new way to predict a protein's interactions with other proteins and biomolecules, and its biochemical activity, merely by observing its surface.

Spirituality affects the behavior of mortgagers
According to Olga Miroshnichenko, a Sc.D in Economics, and a Professor at the Department of Economics and Finance, Tyumen State University, morals affect the thinking of mortgage payers and help them avoid past due payments.

Asking if behavior can be changed on climate crisis
One of the more complex problems facing social psychologists today is whether any intervention can move people to change their behavior about climate change and protecting the environment for the sake of future generations.

Read More: Behavior News and Behavior Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to