Winton Symposium's material world

September 05, 2013

On 30 September, the Department of Physics will host the second annual Winton Symposium at the Cavendish Laboratory on 'Materials Discovery'.

This year's focus on 'Materials Discovery' will bring together leading scientists from around the world, revealing unexpected breakthroughs in a wide range of subjects from electronics to life sciences.

Attendance is free, and with last year's inaugural 'Energy Efficiency' event drawing a large audience of researchers and industrialists from a range of disciplines, the event promises to be popular - so pre-registration is essential.

This year's sessions for the one-day symposium will be:

Session I

Professor Chris Wise, designer of the award-winning London 2012 Velodrome, will open the symposium by focusing on sustainability in the engineering industry. Exploring current thoughts on demand reduction, the global problem of shrinking resources and an expanding population, Wise will discuss how these issues can inform innovative building design.

Session II

From great structures to the microscopic, graphene Nobel prize-winner Professor Sir Konstantin Novoselov from the University of Manchester will explore the world of ultrathin films and their unexpected properties. This will be followed by Professor Paul Alivisatos, Director of the Lawrence Berkeley National Laboratory, one of the pioneers in the field of nanocrystals, who will address the design of these minute structures and reveal their practical applications.

Session III

Professor Jason Chin from the Cambridge/MRC Laboratory of Molecular Biology will delve into the building blocks of biological world. Despite their complexity, Chin will show how these structures can be manipulated to create new forms of functional materials, and share his research into the production of artificial genetic code. Professor Daniel Fletcher from University of California, Berkeley, who has been studying the mechanics and dynamics of cell movement, will look at the self-organisation of biological structures.

Session IV

Finally, two leading scientists with backgrounds in chemistry will cover their latest breakthroughs. Professor Ben Feringa from the University of Groningen has designed a wide range of synthetic materials, and will talk about his leading research in the field of 'molecular motors'. Professor George

Whitesides, one of the leading material scientists of his generation and Professor at Department of Chemistry at Harvard University will discuss his multi- disciplinary research with applications ranging from biology to microelectronics.

Dr Nalin Patel, Programme Manager for Winton Programme, said: "We are delighted to welcome world-leading scientists to Cambridge to explore some of the recent breakthroughs in materials research, and how they may have an impact on societies needs in the future."

The symposium is free of charge to pre-registered attendees and will include a free lunch.
-end-
For registration visit:http://www.phy.cam.ac.uk/conferences/materialsdiscovery/form/booking.php

For more information visit:http://www.phy.cam.ac.uk/conferences/materialsdiscovery/furtherinfo.php

University of Cambridge

Related Physics Articles from Brightsurf:

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.

Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.

Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

Read More: Physics News and Physics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.