Risk to consumers from fungal toxins in shellfish should be monitored

September 05, 2013

To protect consumers, screening shellfish for fungal toxins is important, say scientists.

Research, published today (06 September) in the Society for Applied Microbiology (SfAM) journal, Letters in Applied Microbiology, shows that in an area with contamination by strains of Penicillium fungus, bivalve molluscs (clams, oysters, mussels, scallops, etc.) will contain toxins at much higher levels that are found in the surrounding environment.

Professor Yves François Pouchus, from the University of Nantes, France, led the research, he said "A high level of toxins in the shellfish tells us that we have to be careful not to underestimate the impact of certain Penicillium strains in the water where shellfish are harvested for human consumption."

Professor Pouchus' team have found that the fungi actually produce more toxin when growing inside mussels or in a medium containing mussel extract.

Although toxins from Penicillium don't cause acute food poisoning, they can have a negative impact on cells and DNA. In theory, these mycotoxins could cause health issues in the long term, such as cancer.

Pouchus concluded "At this point, we think it would be pertinent to begin screening edible shellfish for mycotoxins in order to protect consumers."
-end-


Wiley

Related Mussels Articles from Brightsurf:

Small mussels in the Baltic are getting even smaller
Blue mussels in the Baltic Sea are getting smaller with time but bigger in numbers, according to a new study from Stockholm University.

Future ocean conditions could cause significant physical changes in marine mussels
Scientists from the University of Plymouth showed increased temperature and acidification of our oceans over the next century could have a range of effects on an economically important marine species

Laundry lint can cause significant tissue damage within marine mussels
Research by the University of Plymouth showed that ingesting lint caused significant abnormality within the mussels' gills, as well as atrophy or deformities leading to loss of definition in digestive tubules

Insight from sports medicine leads to discovery about mussels in acidifying ocean
Feeding rates of blue mussels slow down under ocean acidification conditions, and the cause may be the slowing beat of gill cilia, similar to a known response in human lung cells.

Decreased iron levels in seawater make mussels loosen their grip
Mussels secrete sticky plaques that help them attach to wet surfaces, such as rocks on the beach.

Neanderthals ate mussels, fish, and seals too
Over 80,000 years ago, Neanderthals fed themselves on mussels, fish and other marine life.

Genetic variation gives mussels a chance to adapt to climate change
Existing genetic variation in natural populations of Mediterranean mussels allows them to adapt to declining pH levels in seawater caused by carbon emissions.

Contamination by metals can increase metabolic stress in mussels
The researchers propose that this evidence should be used as input to public policy with the aim of mitigating the impacts of human activities on coastal and marine ecosystems.

Australia's got mussels (but it could be a problem)
One of the world's most notorious invasive species has established itself on Australia's coastlines, according to research from The University of Queensland.

Gimme shelter: Seven new leech species call freshwater mussels home
The frequent presence of leeches with a hidden lifestyle in the mantle cavity of freshwater mussels has been recorded since the second half of the 19th century.

Read More: Mussels News and Mussels Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.