Heparin stimulates food intake and body weight gain in mice

September 05, 2017

Heparin is a medication widely used to prevent blood clotting; it is named after and mimics the naturally occurring anticoagulant in the body. However, research published today in Cell Reports shows a novel role of heparin as a promoter of food intake and body weight increase in animal models. These results suggest that heparin could be a potential target for drugs regulating appetite and weight control.

"In addition to its role as an anticoagulant, heparin, which is normally produced by the body, has been known to affect other biological functions. In this study, we are among the first groups to investigate heparin's potential role in regulating the body's energy balance," said co-corresponding author Dr. Yong Xu, associate professor of pediatrics, and of molecular and cellular biology at Baylor College of Medicine.

"Our earlier studies showed that serum heparin levels in mice increased significantly during starvation. These encouraged us to explore a potential role of heparin in feeding control," said co-corresponding author, Dr. Gang Shu, professor in the College of Animal Science at South China Agricultural University.

How heparin stimulates food intake

The research team discovered that heparin stimulates the AgRP neurons located in the hypothalamus, one of the most important appetite-modulating neurons, which results in increased production of AgRP protein, a neuropeptide that stimulates food intake. Heparin also stimulates AgRP neurons to fire electric impulses and release of neurotransmitters. The researchers think that both effects on AgRP neurons contribute to the increased food intake observed in the mice.

Interestingly, "we also demonstrated that heparin activates AgRP neurons by competing with insulin for binding to the insulin receptor," said Shu.

"Insulin and heparin have opposite effects on AgRP neurons," Xu said. "Insulin treatment suppresses AgRP neuron firing of electrical impulses and expression of AgRP neuropeptides. We found that heparin competes with and prevents insulin from binding to insulin receptors on AgRP neurons."

Although this study was conducted in animal models, it has potential implications for patients because the medication heparin is widely used in clinical settings to prevent blood clotting. The results raise awareness about a novel effect of heparin that can potentially affect how the body regulates appetite. In addition, this study suggests that heparin can potentially be a target for treating eating disorders, including overeating, a leading cause of obesity in most of the world.
-end-
Other contributors to this work include Canjun Zhu, Pingwen Xu, Yanlin He, Yexian Yuan, Tao Wang, Xingcai Cai, Lulu Yu, Liusong Yang, Junguo Wu, Lina Wang, Xiaotong Zhu, Songbo Wang, Ping Gao, Qianyun Xi, Yongliang Zhang and Qingyan Jiang. The authors are affiliated with Baylor College of Medicine or South China Agricultural University.

This work was supported by grants from National Natural Science Foundation of China (31472105), National Basic Research Program of China (2013CB127304), National Natural Science Foundation of China (31572480) and Excellent Young Teachers Training Program Foundation of Guangdong Province. Support was also provided by grants from the National Institutes of Health (R01DK093587, R01DK101379 and K99DK107008), USDA/CRIS (3092-5-001-059), American Diabetes Association (1-17-PDF-138) and American Heart Association award (17GRNT32960003).

Baylor College of Medicine

Related Insulin Articles from Brightsurf:

US Insulin prices 8 times higher than in other nations
Insulin list prices in the United States have increased dramatically over the past decade, with per person insulin spending doubling between 2012 and 2016.

A gatekeeper against insulin resistance in the brain
The brain plays a major role in controlling our blood glucose levels.

Sorting and secreting insulin by expiration date
Visualizing the age of insulin secreting granules in cells allowed researchers to investigate how cells' preference for secreting newer granules is disrupted in diabetes.

Researchers develop a new ultrafast insulin
Stanford researchers tested a new insulin drug in diabetic pigs and found that it was twice as fast-acting as traditional insulin.

Insulin signaling suppressed by decoys
The discovery of an insulin 'decoy' molecule from the lab of Matthew Gill, PhD, in Florida shakes up understanding of insulin signaling, with implications for diabetes, longevity and aging research.

New mechanism for dysfunctional insulin release identified
In a new study, researchers at Uppsala University have identified a previously unknown mechanism that regulates release of insulin, a hormone that lowers blood glucose levels, from the β-cells (beta cells) of the pancreas.

Type 2 diabetes is not just about insulin
Obesity, by promoting the resistance to the action of insulin, is a major risk factor of diabetes.

The insulin under the influence of light
By understanding how the brain links the effects of insulin to light, researchers (UNIGE) are deciphering how insulin sensitivity fluctuates according to circadian cycles.

Does insulin resistance cause fibromyalgia?
Researchers led by a team from The University of Texas Medical Branch at Galveston were able to dramatically reduce the pain of fibromyalgia patients with medication that targeted insulin resistance.

Insulin insights
Insulin triggers genome-wide changes in gene expression via an unexpected mechanism.

Read More: Insulin News and Insulin Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.