Nav: Home

Study identifies new metabolic target in quest to control immune response

September 05, 2017

A surprising discovery that immune cells possess an internal warehouse of glycogen used to activate immune responses could help to increase immune activity in vaccines or suppress immune reactions in autoimmune disease or hyper-inflammatory conditions.

Results of the new study in the journal Cell Metabolism show that the immune responses of dendritic cells are fueled by an intracellular storage of sugar as opposed to external sugar, where prior research has focused.

The novel finding adds an important missing piece to the puzzle of how early immune responses are powered from a metabolic standpoint, and provides immunologists with a new area of focus in their ongoing effort to regulate immune activity.

"By either enhancing or depleting this sugar warehouse within the cell, the hope would be that we could either influence or dampen immune reactions," says study author Eyal Amiel, assistant professor at the University of Vermont in the Department of Medical Laboratory and Radiation Science in the College of Nursing and Health Sciences. "What we're really in the business of is finding new switches to toggle to that effect and this finding provides us with a new regulatory target that regulates immune activity."

The finding gives immunologists a key piece of new information to better understand how the early part of the bioenergetics of a dendritic cell immune response is generated. This is especially significant given the importance of timing when it comes to immune response and the speed at which the switch of inflammation can be either increased or suppressed.

"What's surprising is that the intracellular sugar pool is the more important one early on," says Amiel, who co-authored the paper with Phyu Thwe, a Ph.D. student in Amiel's lab, and three external researchers. "The reason that is so important is because in any kind of immune protection scenario it is absolutely a race against time between the microbe and mammalian immune response."

When Amiel and his colleagues impaired the ability of dendritic cells to access the internal warehouse of sugar, the cells were less effective at stimulating an immune response in a number of measurable ways. "The really exciting thing is we believe our findings likely extend to other cells of the immune system and are not dendritic cell-specific" says Amiel.

In a previous paper in Nature Immunology, Amiel and lead author Bart Everts, assistant professor at the Leiden University Medical center in the Netherlands, found that the early consumption of glucose is vital to the activation of cells, in terms of the production and secretion of proteins that are essential to the cells' immune function.

Amiel has started conducting new research on mice only with deficiencies in glycogen synthesis only in dendritic cells to measure the impact of blocking the creation of the intracellular glycogen supply on the longer-term immunological capacity of those cells.

"We know that if we prevent their ability to use glycogen during that early window there are long-term consequences for the abilities of those dendritic cells to stimulate T-Cells, even hours and days after the fact."

-end-



University of Vermont

Related Immune Response Articles:

Discovering the early age immune response in foals
Researchers at the Cornell University College of Veterinary Medicine have discovered a new method to measure tiny amounts of antibodies in foals, a finding described in the May 16 issue of PLOS ONE.
Nixing the cells that nix immune response against cancer
For first time, study characterizes uptick of myeloid-derived suppressor cells in the spleens of human cancer patients, paving the way for therapies directed against these cells that collude with cancer.
Jumbled chromosomes may dampen the immune response to tumors
How well a tumor responds to immunotherapy may depend in part on whether its chromosomes are intact or in a state of disarray, a new study reports.
Tailored organoid may help unravel immune response mystery
Cornell and Weill Cornell Medicine researchers report on the use of biomaterials-based organoids in an attempt to reproduce immune-system events and gain a better understanding of B cells.
Tweaking the immune response might be a key to combat neurodegeneration
Patients with Alzheimer's or other neurodegenerative diseases progressively loose neurons yet cannot build new ones.
Estrogen signaling impacted immune response in cancer
New research from The Wistar Institute showed that estrogen signaling was responsible for immunosuppressive effects in the tumor microenvironment across cancer types.
No platelets, no immune response
When a virus attacks our organism, an inflammation appears on the affected area.
Malaria: A genetically attenuated parasite induces an immune response
With nearly 3.2 billion people currently at risk of contracting malaria, scientists from the Institut Pasteur, the CNRS and Inserm have experimentally developed a live, genetically attenuated vaccine for Plasmodium, the parasite responsible for the disease.
New finding will help target MS immune response
Researchers have made another important step in the progress towards being able to block the development of multiple sclerosis and other autoimmune diseases.
Flu infection reveals many paths to immune response
A new study of influenza infection in an animal model broadens understanding of how the immune system responds to flu virus, showing that the process is more dynamic than usually described, engaging a broader array of biological pathways.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: Radiolab

Oliver Sipple
One morning, Oliver Sipple went out for a walk. A couple hours later, to his own surprise, he saved the life of the President of the United States. But in the days that followed, Sipple's split-second act of heroism turned into a rationale for making his personal life into political opportunity. What happens next makes us wonder what a moment, or a movement, or a whole society can demand of one person. And how much is too much?  Through newly unearthed archival tape, we hear Sipple himself grapple with some of the most vexing topics of his day and ours - privacy, identity, the freedom of the press - not to mention the bonds of family and friendship.  Reported by Latif Nasser and Tracie Hunte. Produced by Matt Kielty, Annie McEwen, Latif Nasser and Tracie Hunte. Special thanks to Jerry Pritikin, Michael Yamashita, Stan Smith, Duffy Jennings; Ann Dolan, Megan Filly and Ginale Harris at the Superior Court of San Francisco; Leah Gracik, Karyn Hunt, Jesse Hamlin, The San Francisco Bay Area Television Archive, Mike Amico, Jennifer Vanasco and Joey Plaster. Support Radiolab today at Radiolab.org/donate.
Now Playing: TED Radio Hour

Future Consequences
From data collection to gene editing to AI, what we once considered science fiction is now becoming reality. This hour, TED speakers explore the future consequences of our present actions. Guests include designer Anab Jain, futurist Juan Enriquez, biologist Paul Knoepfler, and neuroscientist and philosopher Sam Harris.