Nav: Home

'Chromosomal catastrophes' in colorectal cancer

September 05, 2018

'Chromosomal catastrophes' have been found to occur along the evolutionary timeline of colorectal cancer development, according to new research led by Queen Mary University of London.

The findings are published in Nature Ecology & Evolution.

Lead author Dr William Cross from Queen Mary University of London said: "Our results change the way in which we understand how bowel cancers develop. Although the classical model of colorectal cancer development appears correct in some cases, our results suggest that we need to rethink certain aspects of it."

Prof Trevor Graham from Queen Mary University of London said: "Bowel cancer is one of the most common cancers in the UK. Our study gives more insight into how bowel cancer develops, and provides a foundation that we can build upon to develop tools to predict who is at risk of developing the disease."

As tumours grow, different cells acquire various genetic changes that allow them to adapt to their environment. The cells that acquire changes that confer the best chance of survival and growth within the environment are favoured, and so increase in number. This is the basis of cancer evolution. In this way, numerous populations of cells with different genetic codes build up, creating tumours that are highly genetically diverse or heterogeneous.

Understanding how cancers develop and change over time is a big challenge. For obvious reasons, scientists can't simply sit and watch a cancer growing in a person. The researchers from Queen Mary's Barts Cancer Institute were part of a collaborative team that set out to identify when particular genetic changes arise during bowel cancer development.

By comparing the genetics of benign and cancerous bowel tumours, the international team - led by Prof Trevor Graham (Queen Mary University of London) and Prof Ian Tomlinson (University of Oxford and the University of Birmingham) - revealed that the benign growths were more heterogeneous than the cancerous tumours.

In addition, the team identified some other striking differences between the genetic makeups of the two tumour types. Unlike the benign samples, the cancerous tumours appeared to have largely rearranged chromosomes (structures that carry our genetic information in the form of genes), with sections of the genetic code being lost or gained.

Using mathematical modelling, the researchers were able to determine when these rearrangements occurred in the timeline of cancer development. Surprisingly, they found that the majority of the genetic alterations occurred very close together in time, possibly even in a single incident referred to by the researchers as a 'chromosomal catastrophe.' This event appeared to be associated with the transition from benign to cancerous tumours.

On the National Health Service, bowel cancer screening is offered to individuals aged 55 and over. When pre-cancerous growths are found within the bowel, they are removed during endoscopy; however a risk of cancer development still exists in some cases. Currently, there is no way of determining which individuals are likely to develop cancer in the future.

With a growing understanding of the genetic events that result in the evolution of malignancy, the team hypothesise that by examining the pre-cancerous tissue removed from a patient, it may be possible to identify genetic features associated with the progression towards cancer. Patients at high risk of developing cancer can then be monitored accordingly.

The research, supported by Cancer Research UK, The Wellcome Trust, Bowel and Cancer Research, NIHR Oxford Biomedical Research Centre, and other funders, has provided insights into the evolutionary timeline of cancer progression and the team hope that the findings may aid in the identification of individuals at high risk of developing cancer.

To build upon the findings of the current research, the team endeavour to identify the cause of the chromosomal catastrophes. Knowing the cause of these vast genetic rearrangements may provide a means of predicting cancer risk and, if this event could be prevented, may provide an avenue that could be exploited for the development of novel cancer therapies.
-end-
For more information, please contact:

Joel Winston
Public Relations Manager (School of Medicine and Dentistry)
Queen Mary University of London
j.winston@qmul.ac.uk
Tel: +44-0-20-7882-7943 / +44-0-7970-096-188

Notes to the editor

* Images are available here: http://bit.ly/2M0eYSv

* Research paper: 'The evolutionary landscape of colorectal tumorigenesis'. William Cross, Michal Kovac, Ville Mustonen, Daniel Temko, Hayley Davis, Ann-Marie Baker, Sujata Biswas, Roland Arnold, Laura Chegwidden, Chandler Gatenbee, Alexander R. Anderson, Viktor H. Koelzer, Pierre Martinez, Xiaowei Jiang, Enric Domingo, Dan J. Woodcock, Yun Feng, Monika Kovacova, Tim Maughan, The S:CORT Consortium, Marnix Jansen, Manuel Rodriguez-Justo, Shazad Ashraf, Richard Guy, Christopher Cunningham, James E. East, David C. Wedge, Lai Mun Wang, Claire Palles, Karl Heinimann, Andrea Sottoriva, Simon J. Leedham, Trevor A. Graham & Ian P. M. Tomlinson. Nature Ecology & Evolution (2018)

Available here: https://www.nature.com/articles/s41559-018-0642-z

Queen Mary University of London

Related Cancer Articles:

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.
Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.
Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: IRL Online
Original broadcast date: March 20, 2020. Our online lives are now entirely interwoven with our real lives. But the laws that govern real life don't apply online. This hour, TED speakers explore rules to navigate this vast virtual space.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Falling
There are so many ways to fall–in love, asleep, even flat on your face. This hour, Radiolab dives into stories of great falls.  We jump into a black hole, take a trip over Niagara Falls, upend some myths about falling cats, and plunge into our favorite songs about falling. Support Radiolab by becoming a member today at Radiolab.org/donate.