Nav: Home

Not just images

September 05, 2019

MRI's give us a picture of our body's insides--organs, bones, nerves and soft tissue. But what if MRI's could show us the molecular makeup of our body parts, and help doctors more quickly determine the onset of disease and begin treatment?

In a paper published today in Nature Communications, Dr. Aviv Mezer and his team at the Hebrew University of Jerusalem (HUJI)'s Edmond and Lily Safra Center for Brain Sciences successfully transformed an MRI from a diagnostic camera that takes into a device that can record changes in the biological makeup of brain tissue. This is especially important for doctors looking to understand whether a patient is merely getting older or developing a neurodegenerative disease, such as Alzheimer's or Parkinson's.

"Instead of images, our quantitative MRI model provides molecular information about the brain tissue we're studying. This could allow doctors to compare brain scans taken over time from the same patient, and to differentiate between healthy and diseased brain tissue, without resorting to invasive or dangerous procedures, such as brain tissue biopsies," explained Mezer.

External signs of aging are familiar to us: gray hair, a stooped spine, occasional memory loss. However, how do we know if a patient's brain is aging normally or developing a disease? The answer is found on the biological level. Both normal aging and neurodegenerative diseases create biological "footprints" in the brain, changing the lipid and protein content of brain tissue.

Whereas current MRI scans provide only pictures of the human brain, this new technique provides biological readouts of brain tissue--the ability to see what's going on on a molecular level, and to direct a course of treatment accordingly. "When we take a blood test, it shows us the exact number of white blood cells in our body and whether that number is higher than normal due to illness. MRI scans provide images of the brain but don't show changes in the composition of the human brain, changes that could potentially differentiate normal aging from the beginnings of Alzheimer's or Parkinson's," shared PhD student Shir Filo who worked on the study.

Looking ahead, Mezer believes that the new MRI technique will also provide a crucial understanding into how our brains age, "when we scanned young and old patients' brains, we saw that different brain areas ages differently. For example, in some white-matter areas, there is a decrease in brain tissue volume, whereas in the gray-matter, tissue volume remains constant. However, we saw major changes in the molecular makeup of the gray matter in younger versus older subjects".

All this bodes well for patients. Not only will MRI's be able to distinguish molecular signs of normal aging from the early signs of disease. Patients will more likely receive correct diagnoses earlier, speeding up when they begin treatment and maintaining an improved quality of life longer, all via a non-invasive technique.
-end-


The Hebrew University of Jerusalem

Related Aging Articles:

Researchers discover new cause of cell aging
New research from the USC Viterbi School of Engineering could be key to our understanding of how the aging process works.
Deep Aging Clocks: The emergence of AI-based biomarkers of aging and longevity
The advent of deep biomarkers of aging, longevity and mortality presents a range of non-obvious applications.
Intelligence can link to health and aging
For over 100 years, scientists have sought to understand what links a person's general intelligence, health and aging.
Putting the brakes on aging
Salk Institute researchers have developed a new gene therapy to help decelerate the aging process.
New insights into the aging brain
A group of scientists at the Gladstone Institutes investigated why the choroid plexus contains so much more klotho than other brain regions.
More Aging News and Aging Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...