Not just images

September 05, 2019

MRI's give us a picture of our body's insides--organs, bones, nerves and soft tissue. But what if MRI's could show us the molecular makeup of our body parts, and help doctors more quickly determine the onset of disease and begin treatment?

In a paper published today in Nature Communications, Dr. Aviv Mezer and his team at the Hebrew University of Jerusalem (HUJI)'s Edmond and Lily Safra Center for Brain Sciences successfully transformed an MRI from a diagnostic camera that takes into a device that can record changes in the biological makeup of brain tissue. This is especially important for doctors looking to understand whether a patient is merely getting older or developing a neurodegenerative disease, such as Alzheimer's or Parkinson's.

"Instead of images, our quantitative MRI model provides molecular information about the brain tissue we're studying. This could allow doctors to compare brain scans taken over time from the same patient, and to differentiate between healthy and diseased brain tissue, without resorting to invasive or dangerous procedures, such as brain tissue biopsies," explained Mezer.

External signs of aging are familiar to us: gray hair, a stooped spine, occasional memory loss. However, how do we know if a patient's brain is aging normally or developing a disease? The answer is found on the biological level. Both normal aging and neurodegenerative diseases create biological "footprints" in the brain, changing the lipid and protein content of brain tissue.

Whereas current MRI scans provide only pictures of the human brain, this new technique provides biological readouts of brain tissue--the ability to see what's going on on a molecular level, and to direct a course of treatment accordingly. "When we take a blood test, it shows us the exact number of white blood cells in our body and whether that number is higher than normal due to illness. MRI scans provide images of the brain but don't show changes in the composition of the human brain, changes that could potentially differentiate normal aging from the beginnings of Alzheimer's or Parkinson's," shared PhD student Shir Filo who worked on the study.

Looking ahead, Mezer believes that the new MRI technique will also provide a crucial understanding into how our brains age, "when we scanned young and old patients' brains, we saw that different brain areas ages differently. For example, in some white-matter areas, there is a decrease in brain tissue volume, whereas in the gray-matter, tissue volume remains constant. However, we saw major changes in the molecular makeup of the gray matter in younger versus older subjects".

All this bodes well for patients. Not only will MRI's be able to distinguish molecular signs of normal aging from the early signs of disease. Patients will more likely receive correct diagnoses earlier, speeding up when they begin treatment and maintaining an improved quality of life longer, all via a non-invasive technique.
-end-


The Hebrew University of Jerusalem

Related Aging Articles from Brightsurf:

Surprises in 'active' aging
Aging is a process that affects not only living beings.

Aging-US: 'From Causes of Aging to Death from COVID-19' by Mikhail V. Blagosklonny
Aging-US recently published ''From Causes of Aging to Death from COVID-19'' by Blagosklonny et al. which reported that COVID-19 is not deadly early in life, but mortality increases exponentially with age - which is the strongest predictor of mortality.

Understanding the effect of aging on the genome
EPFL scientists have measured the molecular footprint that aging leaves on various mouse and human tissues.

Muscle aging: Stronger for longer
With life expectancy increasing, age-related diseases are also on the rise, including sarcopenia, the loss of muscle mass due to aging.

Aging memories may not be 'worse, 'just 'different'
A study from the Department of Psychological & Brain Sciences in Arts & Sciences adds nuance to the idea that an aging memory is a poor one and finds a potential correlation between the way people process the boundaries of events and episodic memory.

A new biomarker for the aging brain
Researchers at the RIKEN Center for Biosystems Dynamics Research (BDR) in Japan have identified changes in the aging brain related to blood circulation.

Scientists invented an aging vaccine
A new way to prevent autoimmune diseases associated with aging like atherosclerosis, Alzheimer's disease, and Parkinson's disease was described in the article.

The first roadmap for ovarian aging
Infertility likely stems from age-related decline of the ovaries, but the molecular mechanisms that lead to this decline have been unclear.

Researchers discover new cause of cell aging
New research from the USC Viterbi School of Engineering could be key to our understanding of how the aging process works.

Deep Aging Clocks: The emergence of AI-based biomarkers of aging and longevity
The advent of deep biomarkers of aging, longevity and mortality presents a range of non-obvious applications.

Read More: Aging News and Aging Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.