Nav: Home

New method for imaging biological molecules

September 05, 2019

Researchers at Karolinska Institutet in Sweden have, together with colleagues from Aalto University in Finland, developed a new method for creating images of molecules in cells or tissue samples. The method is based on the use of DNA snippets and is called DNA microscopy. The approach is currently described in the scientific journal PNAS.

The new method involves researchers in the first stage mixing up a cell or tissue sample with short sequences of single-stranded DNA, selected to attach to the specific molecules that are going to be studied. If it for example involves a specific protein that is going to be investigated, small DNA snippets are used that bind to this particular protein. In the next stage, enzymes are fed to the short DNA sequences to connect and form DNA molecules.

By analysing these newly formed DNA molecules with so-called DNA sequencing, it is possible to see exactly which DNA snippets have ended up next to each other. Based on this information, you can add a puzzle that shows how all of the DNA sequences must be connected.

Since DNA sequences are attached to the molecules that are being represented, it is possible to understand how abundant they occur and where they are in the cells. What researchers are now publishing is a mathematical model that makes it possible to calculate this as well as create images from such information.

"You can liken it to the table placement game at a wedding where each guest gets a note that matches the person next to them at the table. If you have all of these notes you can recreate the table placement. In our experiments, the notes represent the DNA-snippets and the guests are the molecules that the snippets are attached to," says Björn Högberg, professor at the Department of Medical Biochemistry and Biophysics at Karolinska Institutet.

The advantage of this method, which scientists call DNA microscopy, is that it makes it possible to search for specific molecules within a larger material, such as a whole cell collection or a tissue sample. With traditional microscopy, where you have to look at one area at a time, it is very time-consuming. But with DNA microscopy it is possible to, for example, screen for certain molecules and examine how frequent they are.

The method also makes it possible to see what role the immediate environment plays in the life of a cell, i.e. how micro-environment might affect possible disease development - to mention only two of several possible useful areas when it comes to DNA microscopy.

"This is a tool that can be used to gain a better understanding of how biology works and how cells work together. This knowledge can provide us with a better picture of how different diseases develop. In the long run, this tool can also provide opportunities for safer diagnostics," says Ian Hoffecker, researcher in Björn Högberg's Research Group at the Department of Medical Biochemistry and Biophysics at Karolinska Institutet and the coordinator of the study.
-end-
The research is funded by the Åke Wiberg Foundation, the Knut and Alice Wallenberg Foundation and the Academy of Finland.

Publication: "A Computational Framework for DNA Sequencing Microscopy". Ian T. Hoffecker, Yunshi Yang, Giulio Bernardinelli, Pekka Orponen and Björn Högberg. PNAS, online 4 September 2019, doi: 10.1073/pnas.1821178116.

Karolinska Institutet

Related Dna Articles:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.
Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.
Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.
Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.
Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.
Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.
Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
More DNA News and DNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.