Closing in on elusive particles

September 05, 2019

In the quest to prove that matter can be produced without antimatter, the GERDA experiment at the Gran Sasso Underground Laboratory in Italy is looking for signs of neutrinoless double beta decay. The experiment has the greatest sensitivity worldwide for detecting the decay in question. To further improve the chances of success, a follow-up project, LEGEND, uses an even more refined decay experiment.

While the Standard Model of Particle Physics has remained mostly unchanged since its initial conception, experimental observations for neutrinos have forced the neutrino part of the theory to be reconsidered in its entirety.

Neutrino oscillation was the first observation inconsistent with the predictions and proves that neutrinos have non-zero masses, a property that contradicts the Standard Model. In 2015, this discovery was rewarded with the Nobel Prize.

Are neutrinos their own antiparticles?

Additionally, there is the longstanding conjecture that neutrinos are so-called Majorana particles: Unlike all other constituents of matter, neutrinos might be their own antiparticles. This would also help explain why there is so much more matter than antimatter in the Universe.

The GERDA experiment is designed to scrutinize the Majorana hypothesis by searching for the neutrinoless double beta decay of the germanium isotope 76-Ge: Two neutrons inside a 76-Ge nucleus simultaneously transform into two protons with the emission of two electrons. This decay is forbidden in the Standard Model because the two antineutrinos - the balancing antimatter - are missing.

The Technical University of Munich (TUM) has been a key partner of the GERDA project (GERmanium Detector Array) for many years. Prof. Stefan Schönert, who heads the TUM research group, is the speaker of the new LEGEND project.

The GERDA experiment achieves extreme levels of sensitivity

GERDA is the first experiment to reach exceptionally low levels of background noise and has now surpassed the half-life sensitivity for decay of 10^26 years. In other words: GERDA proves that the process has a half-life of at least 10^26 years, or 10,000,000,000,000,000 times the age of the Universe.

Physicists know that neutrinos are at least 100,000 times lighter than electrons, the next heaviest particles. What mass they have exactly, however, is still unknown and another important research topic.

In the standard interpretation, the half-life of the neutrinoless double beta decay is related to a special variant of the neutrino mass called the Majorana mass. Based the new GERDA limit and those from other experiments, this mass must be at least a million times smaller than that of an electron, or in the terms of physicists, less than 0.07 to 0.16 eV/c^2 [1].

Consistent with other experiments

Also other experiments limit the neutrino mass: the Planck mission provides a limit on another variant of the neutrino mass: The sum of the masses of all known neutrino types is less than 0.12 to 0.66 eV/c^2.

The tritium decay experiment KATRIN at the Karlsruhe Institute of Technology (KIT) is set-up to measure the neutrino mass with a sensitivity of about 0.2 eV/c^2 in the coming years. These masses are not directly comparable, but they provide a cross check on the paradigm that neutrinos are Majorana particles. So far, no discrepancy has been observed.

From GERDA to LEGEND

During the reported data collection period, GERDA operated detectors with a total mass of 35.6 kg of 76-Ge. Now, a newly formed international collaboration, LEGEND, will increase this mass to 200 kg of 76-Ge until 2021 and further reduce the background noise. The aim is to achieve a sensitivity of 10^27 years within the next five years.
-end-
Publication:

The GERDA collaboration: Probing Majorana neutrinos with double beta decay
Science, published online on Thursday 5 September, 2019
DOI: 10.1126/science/ aav8613

Link:https://science.sciencemag.org/lookup/doi/10.1126/science.aav8613

More information:

GERDA is an international European collaboration of more than 100 physicists from Belgium, Germany, Italy, Russia, Poland and Switzerland. In Germany, GERDA is supported by the Technical Universities of Munich and Dresden, the University of Tübingen and the Max Planck Institutes for Physics and for Nuclear Physics. German funding is provided by the German Federal Ministry of Education and Research (BMBF), the German Research Foundation (DFG) via the Excellence Cluster Universe and SFB1258, as well as the Max Planck Society.

Prof. Schönert received an ERC Advanced Grant for preparatory work on the LEGEND project in 2018. A few days ago, Prof. Susanne Mertens received an ERC grant for her work on the KATRIN experiment. In the context of that experiment, she will search for so-called sterile neutrinos.

[1] In particle physics masses are specified not in kilograms, but rather in accordance with Einstein's equation E=mc^2: electron volts [eV] divided by the speed of light squared. Electron volts are a measure of energy. This convention is used to circumvent unfathomably small units of mass: 1 eV/c^2 corresponds to 1.8 × 10^-36 kilograms.

Homepage of the GERDA-Collaboration: https://www.mpi-hd.mpg.de/gerda/home.html

Technical University of Munich (TUM)

Related Neutrinos Articles from Brightsurf:

Big answers from tiny particles
A team of physicists led by Kanazawa University demonstrate a theoretical mechanism that would explain the tiny value for the mass of neutrinos and point out that key operators of the mechanism can be probed by current and future experiments.

Physicists cast doubt on neutrino theory
University of Cincinnati physicists, as part of an international research team, are raising doubts about the existence of an exotic subatomic particle that failed to show up in twin experiments.

Exotic neutrinos will be difficult to ferret out
An international team tracking the 'new physics' neutrinos has checked the data of all the relevant experiments associated with neutrino detections against Standard Model extensions proposed by theorists.

Excess neutrinos and missing gamma rays?
A new model points to the coronoe of supermassive black holes at the cores of active galaxies to help explain the excess neutrinos observed by the IceCube Neutrino Observatory.

Where neutrinos come from
Russian astrophysicists have come close to solving the mystery of where high-energy neutrinos come from in space.

Where did the antimatter go? Neutrinos shed promising new light
We live in a world of matter -- because matter overtook antimatter, though they were both created in equal amounts when our universe began.

Strongest evidence yet that neutrinos explain how the universe exists
New data throws more support behind the theory that neutrinos are the reason the universe is dominated by matter.

Why didn't the universe annihilate itself? Neutrinos may hold the answer
New results from an experiment called T2K suggest that physicists are closer than ever before to answering a major mystery: Why didn't the universe annihilate itself in a humungous burst of energy not long after the Big Bang?

T2K insight into the origin of the universe
Lancaster physicists working on the T2K major international experiment in Japan are closing in on the mystery of why there is so much matter in the universe, and so little antimatter.

Radar and ice could help detect an elusive subatomic particle
A new study published today in the journal Physical Review Letters shows, for the first time, an experiment that could detect a class of ultra-high-energy neutrinos using radar echoes.

Read More: Neutrinos News and Neutrinos Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.