Nav: Home

Tiny airborne particles from wildfires have climate change implications

September 05, 2019

Wildfires are widespread across the globe. They occur in places wherever plants are abundant -- such as the raging fires currently burning in the Brazilian Amazon. Such biomass burning (BB) can be an environmental calamity.

The smoke from BB events produces large amounts of aerosol particles and gases. These emissions can cause major problems for visibility and health, as well as for local and global climate.

BB emissions are expected to increase in the future as a result of climate change. Tarballs, which are microscopic organic BB particles, are estimated to contribute up to 30% of BB aerosol mass. Because tarballs are a dominant, light-absorbing type of aerosol particle in BB smoke, understanding their influence on climate is crucial. But details of how they form and influence climate change have been unclear.

Senior researcher Kouji Adachi, currently working at the Meteorological Research Institute in Tsukuba, Japan, was a postdoctoral research associate from 2005 until 2011 with Professor Peter Buseck of Arizona State University's School of Molecular Sciences and School of Earth and Space Exploration.

Their work attracted the attention of colleagues from the Department of Energy's Brookhaven National Lab in Upton, New York. Principal Investigators, Arthur Sedlacek III and Lawrence Kleinman, with support from the Atmospheric Sciences Program, were planning the Biomass Burning Operational Period (BBOP) field campaign, in which an instrumented airplane would measure rapid chemical changes in wildfire smoke.

Sedlacek and Kleinman approached Buseck about participating in BBOP, as the sampling strategy provided an ideal laboratory in the sky to study tarball formation.

The results, published online September 5, are in a Proceedings of the National Academy of Sciences paper titled "Spherical tarball particles form through rapid chemical and physical changes of organic matter in biomass-burning smoke."

The team's observations show that tarballs form through a combination of chemical and physical changes of organic aerosols formed within the first hours following smoke production.

"I'm so pleased that tarballs, the subject of this paper, were first reported in 2003 papers in which an ASU chemistry graduate student, Li Jia, and postdoctoral research associate, Mihaly Posfai, were major contributors; thus the School of Molecular Sciences and the School of Earth and Space Exploration had an important role," said Buseck.

Buseck, an ASU Regents Professor, also is being awarded the 2019 Roebling Medal this month, the highest award of the Mineralogical Society of America for outstanding original research in mineralogy.

"This study of tarball particles and the possible effects on climate change further shows the breadth and diversity of Buseck's research," said School of Earth and Space Exploration Director Meenakshi Wadhwa. "From solid-state geochemistry and mineralogy, to atmospheric geochemistry, to cosmochemistry, he continually proves to be a pioneer in his field."

"Peter Buseck and his group have developed the use of transmission electron microscopy to study minerals, meteorites and aerosol particles in a uniquely interesting way," said Professor Neal Woodbury, director of the School of Molecular Sciences. "His team's current findings on tarball formation are a good example and will significantly improve assessments of biomass burning impacts on regional and global climate."

Tarballs used in this study were collected from large wildfires sampled during the BBOP campaign in the summer of 2013 in the northwestern United States. Using a Gulfstream-1 research airplane, the team collected wildfire aerosol particles on repeated flights through smoke plumes. Shapes and compositions of more than 10,000 particles were measured using transmission electron microscopy, with detailed chemical analysis of tarballs performed using scanning transmission X-ray spectroscopy.

The analysis reveals that the fraction of aerosol particles that are tarballs increases with particle age. In addition, the tarball ratios of nitrogen and oxygen relative to potassium, and the particle roundness, also increase with particle age.

In summary, BB emissions including tarballs are expected to increase in coming decades as a result of climate change. This study reveals their formation process through chemical and microphysical analyses. The findings can be used to improve interpretation of BB smoke from satellite data and ground-based observations by considering tarball shape, viscosity and compositional changes during aging and to provide better estimates of their effects in climate models.

Arizona State University

Related Climate Change Articles:

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.
Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.