Prenatal exposure to marine toxin causes lasting damage

September 06, 2005

Durham, N.C. -- Duke University Medical Center researchers have found that the naturally occurring marine toxin domoic acid can cause subtle but lasting cognitive damage in rats exposed to the chemical before birth. Humans can become poisoned by the potentially lethal, algal toxin after eating contaminated shellfish.

The researchers saw behavioral effects of the toxin in animals after prenatal exposure to domoic acid levels below those generally deemed safe for adults, said Edward Levin, Ph.D. Those effects -- including an increased susceptibility to disruptions of memory -- persisted into adulthood, he said.

The findings in rats, therefore, imply that the toxin might negatively affect unborn children at levels that do not cause symptoms in expectant mothers, said Levin. While the researchers note that eating seafood offers significant health benefits, they said their findings suggest that the current threshold of toxin at which affected fisheries are closed should perhaps be lowered. The Federal Drug Administration (FDA) set the current limit based on levels safe for adults, Levin said.

"A single administration of domoic acid to pregnant rats had a lasting affect on the performance of their offspring as adults," Levin said. "The consequences are life-long.

"The findings suggest we may need to re-evaluate monitoring of waters, shellfish and fish to make sure that the most sensitive parts of the human population are protected from toxic exposure to domoic acid," he continued.

The researchers reported their findings in a forthcoming special issue dedicated to research on marine toxins of Neurotoxicology and Teratology.

In 1987, more than 100 people in Canada became ill after eating cultured mussels contaminated with domoic acid. The incident led to three deaths and memory loss in several others.

First detected in the U.S. on the Washington coast in 1991, domoic acid is produced by microscopic algae, specifically the diatom species called Pseudo-nitzschia. When shellfish and crabs ingest the algae, the toxin can become concentrated in their bodies.

Humans eating contaminated seafood develop symptoms including vomiting nausea, diarrhea and abdominal cramps. In severe cases, the toxin leads to neurological damage, characterized by headaches, confusion, coma and even death. Exposure can also cause amnesic shellfish poisoning, characterized by permanent loss of short-term memory.

Since the discovery of domoic acid on the West Coast, officials there collect regular samples of affected marine animals, including razor clams and Dungeness crabs. Fisheries are closed when domoic acid levels reach 20 parts per million (ppm) in the animals' tissues, the level at which the FDA deems the toxin unsafe for human consumption.

Earlier studies in animals have focused on lethal and highly toxic doses of domoic acid. Such exposures cause extensive damage to the hippocampus, a part of the brain involved in learning and memory. More recent reports examining the effects of a range of doses have found highly reproducible behavioral consequences of sublethal doses of the marine toxin, including impairments to spatial memory.

To explore the toxin's effects during development, the Duke team administered domoic acid to pregnant rats at three levels -- each below those found to cause convulsions or fetal loss. Others animals did not receive the toxin. The researchers then conducted a battery of behavioral tests on the exposed and normal animals to determine the effects of early domoic acid on movement and working memory.

Rats with a history of domoic acid exposure showed greater initial activity in a maze test than control rats, followed by a rapid decline. Moreover, domoic acid exposure affected cognitive function in complex ways, the researchers reported.

Toxin exposure decreased the normal difference between male and female rats in their ability to complete tasks of spatial memory, the researchers found. Previous research has shown that males normally outperform females on spatial discrimination learning in particular maze tests.

Exposed rats of both sexes also showed greater susceptibility to a chemical that induces amnesia by compromising particular brain receptors, suggesting that the animals had less functional reserve with which to solve memory tasks, the researchers said.

"Brief, low-dose domoic acid exposure in rats during gestational development results in subtle neurobehavioral impairments that persist into adolescence and adulthood," Levin said. "Furthermore, long-lasting effects on locomotor activity and cognitive function occurred at levels having no clinically evident consequences for the animals."
-end-
Collaborators on the study include Kristen Pizarro, Wyki Gina Pang and Jerry Harrison, all of Duke. John Ramsdell of the NOAA-National Ocean Service also contributed to the research.

Duke University Medical Center

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.