UT Southwestern researchers develop screening test for cells that activate immune system

September 06, 2005

DALLAS - Sept. 6, 2005 - UT Southwestern Medical Center researchers are the first to create a large-scale, cell-based screening method that identifies which compounds activate immune-response cells that hold promise for future cancer-fighting vaccines.

The new screening technique can scan thousands and even millions of compounds to identify those that activate dendritic cells, which are on constant recon patrol throughout the body to scout out cancerous or infected cells and alert the immune system.

"Our assay is unique from other conventional ones in its sensitivity and cost- and time-efficiency," said Dr. Akira Takashima, professor of dermatology and vice chairman for research and head of the project.

Dendritic cells (DCs) are considered key to developing future vaccines that can either mimic the body's natural immune response or turn on immune responses that failed - due, for example, to cancer or an immune deficiency.

The team, which also included Dr. Norikatsu Mitzumoto, assistant professor of dermatology and the study's lead author, and Drs. Hironori Matsushima and Hiroaki Tanaka, postdoctoral researchers in dermatology, created the cell-based biosensor system.

"We basically engineered DCs to express a fluorescent signal only when sensing activation signals so that you can identify immuno-stimulatory agents very easily," said Dr. Takashima. Immuno-stimulatory agents launch the immune system.

The research appears on Blood magazine's online Web site and will appear in a future issue.

"We have optimized the high-throughput screening capability - an experienced scientist can now test one thousand chemicals a day almost single-handedly," added Dr. Mizumoto. Previously, scientists would have to test each compound individually, a time-consuming process.

Their research already has led to the discovery of several compounds that turn on dendritic cells, which are found throughout the body from skin to blood. They continuously scan the body at the cellular level looking for antigens - foreign cells and materials invading the body - and for molecular signatures of tissue damage or infection.

"Their primary job is to present antigens to the immune system so that you develop protective immunity for infection and cancer," said Dr. Takashima.

The DC biosensor system should help pharmaceutical and biotech companies sift through large numbers of chemicals for ones that tell the dendritic cells to launch the immune response. It may also prove useful in identifying biothreat agents because it detects infectious pathogens with high sensitivity.

Dr. Takashima said he hopes to garner additional funding to discover potent immuno-stimulatory drugs by screening high-quality libraries of compounds.

Doing so may be the first step toward developing a new class of vaccines that force or trick the natural immune system to kick on, or initiate an immune response that can be copied and initiated artificially.

Other UT Southwestern researchers from dermatology involved in the study were Dr. Yasushi Ogawa, postdoctoral researcher, and Dr. Jimin Gao, former instructor.
-end-
The research was funded by the National Institutes of Health, the Dermatology Foundation Career Development Award and the American Cancer Society Junior Investigator Award.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

UT Southwestern Medical Center

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.