Nav: Home

Case and Cleveland Clinic researchers identify molecule in age-related macular degeneration

September 06, 2006

CLEVELAND--A dart-like molecule that adheres to proteins in the eye is the key that turns on the uncontrolled growth of blood vessels, according to researchers at Case Western Reserve University and the Cleveland Clinic Cole Eye Institute. Uncontrolled blood vessel growth is a major contributor to the development of age-related macular degeneration (AMD), the leading cause of blindness among people over 65 in the United States.

Robert Salomon and his graduate students Kutralanathan Renganathan and Liang Lu of Case's Department of Chemistry in the College of Arts and Sciences, found that the molecule, Carboxyethylpyrroles (CEPs), attaches to proteins found in the eye, triggering the uncontrolled growth of blood cells.

The Case researchers teamed up with Quteba Ebrahem Jonathan Sears, Amit Vasanji, John Crabb and Bela Anand-Apte and Xiaorong Gu (a Salomon group alumna), of Cleveland Clinic, to complete the study titled Carboxyethlpyrrole oxidative protein modifications stimulate neovascularization: Implications for age-related macular degeneration."

The results of their collaborative work were published in the recent Proceedings of the National Academy of Science (PNAS).

AMD is a progressive disease that results in the severe loss of vision. The early stages of AMD are characterized as "dry," with the disease advancing to the "wet form" as the retina, the part of the eye responsible for central vision, becomes infused with fluid from leaky new blood vessels, during a process called neovascularization. The unchecked blood vessel growth, or angiogenesis, in the retina accounts for 80% of the vision loss in the advanced stages of AMD.

The retina cells that detect light contain polyunsaturated fatty lipids that are exquisitely sensitive to damage by oxygen. Even in healthy eyes, these cells are renewed every ten days. The researchers at Case and Cleveland Clinic used a method developed by Salomon to specifically detect and measure the amount of CEPs found in the eye.

The researchers did in vivo animal studies with membranes from chicken eggs and rat eyes and found that CEPs attached to proteins induce angiogenesis. They also found that the protein part of CEP-protein adducts is not important for producing the growth of the blood vessels. Rather, the actual CEP is the cause of angiogenesis.

In an attempt to block CEP from triggering the angiogenesis process, "we are now trying to find the receptors - the keyholes - in the retina cells that are activated by CEPs," said Salomon. "We are also designing drugs that can mop up the CEPs or prevent their formation."

The research is supported by an Ohio Board of Regents Biomedical Research Technology Transfer Award to the Cole Eye Institute, National Institutes of Health Grants as well as the Foundation Fighting Blindness and the American Health Association.

For more than three decades, Salomon has worked in the area of lipid research. His work centers on the oxidation of lipids in the body that contributes to a host of diseases including glaucoma, keratitis and other eye diseases as well as Alzheimer's disease, atherosclerosis, autism and end-stage renal disease. He discovered many chemical transformations that occur as a result of lipid oxidation, and generated some of the first molecular tools that have been used in clinical studies relating the hardening of the arteries in heart disease. In the hope of preventing the formation of toxic molecules in the eye, through the combination of oxygen with lipids, Salomon is now studying the processes that generate them with a new grant from the National Eye Institute of the National Institutes of Health.

-end-

Case Western Reserve University is among the nation's leading research institutions. Founded in 1826 and shaped by the unique merger of the Case Institute of Technology and Western Reserve University, Case is distinguished by its strengths in education, research, service, and experiential learning. Located in Cleveland, Case offers nationally recognized programs in the Arts and Sciences, Dental Medicine, Engineering, Law, Management, Medicine, Nursing, and Social Work. http://www.case.edu.

The Cleveland Clinic Cole Eye Institute, under the leadership of Hilel Lewis, M.D., is ranked one of the top eye care departments in the country, according to a recent survey published by U.S. News & World Report. More than 135,000 patient visits were recorded at the Institute in 2003. The Institute has state-of-the-art eye clinics, operating rooms for eye surgery, and extensive laboratory and clinical space dedicated to research on ophthalmic diseases and development of new treatments.

Cleveland Clinic, located in Cleveland, Ohio, is a not-for-profit multispecialty academic medical center that integrates clinical and hospital care with research and education. Cleveland Clinic was founded in 1921 by four renowned physicians with a vision of providing outstanding patient care based upon the principles of cooperation, compassion and innovation. U.S. News & World Report consistently names Cleveland Clinic as one of the nation's best hospitals in its annual "America's Best Hospitals" survey. Approximately 1,500 full-time salaried physicians at Cleveland Clinic and Cleveland Clinic Florida represent more than 100 medical specialties and subspecialties. In 2005, there were 2.9 million outpatient visits to Cleveland Clinic. Patients came for treatment from every state and from more than 80 countries. There were nearly 54,000 hospital admissions to Cleveland Clinic in 2005. Cleveland Clinic's Web site address is www.clevelandclinic.org.

Case Western Reserve University
Study: Use of prefabricated blood vessels may revolutionize root canals
Researchers at OHSU in Portland, Oregon, have developed a process by which they can engineer new blood vessels in teeth, creating better long-term outcomes for root canal patients and clinicians.
New findings on formation and malformation of blood vessels
In diseases like cancer, diabetes, rheumatism and stroke, a disorder develops in the blood vessels that exacerbates the condition and obstructs treatment.
Targeting blood vessels to improve cancer immunotherapy
EPFL scientists have improved the efficacy of cancer immunotherapy by blocking two proteins that regulate the growth of tumor blood vessels.
Reprogrammed blood vessels promote cancer spread
Tumor cells use the bloodstream to spread in the body.
Neurons modulate the growth of blood vessels
A team of researchers at Karlsruhe Institute of Technology shake at the foundations of a dogma of cell biology.
Sensor for blood flow discovered in blood vessels
The PIEZO1 cation channel translates mechanical stimulus into a molecular response to control the diameter of blood vessels.
Blood vessels control brain growth
Blood vessels play a vital role in stem cell reproduction, enabling the brain to grow and develop in the womb, reveals new UCL research in mice.
No blood vessels without cloche
After 20 years of searching, scientists discover the mystic gene controlling vessel and blood cell growth in the embryo.
New way of growing blood vessels could boost regenerative medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Regenerating blood vessels gets $2.7 million grant
Biomedical engineers in the Cockrell School of Engineering at The University of Texas at Austin have received $2.7 million in funding to advance a treatment that regenerates blood vessels.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.

Now Playing: Radiolab

Truth Trolls
Today, a third story of folks relentlessly searching for the truth. But this time, the truth seekers are an unlikely bunch... internet trolls.


Now Playing: TED Radio Hour

Rethinking School
For most of modern history, humans have placed smaller humans in institutions called schools. But what parts of this model still work? And what must change? This hour, TED speakers rethink education.TED speakers include teacher Tyler DeWitt, social entrepreneur Sal Khan, international education expert Andreas Schleicher, and educator Linda Cliatt-Wayman.