Melting rate of ice caps in Greenland and Western Antarctica lower than expected

September 06, 2010

GRACE

The melting of the ice caps has been charted since 2002 using the measurements produced by the two GRACE satellites. From space they detect small changes in the Earth's gravitational field. These changes are related to the exact distribution of mass on Earth, including ice and water. When ice melts and lands in the sea, this therefore has an effect on the gravitational field.

Gigatonnes

Based on this principle, previous estimates for the Greenland ice cap calculated that the ice was melting at a rate of 230 gigatonnes a year (i.e. 230,000 billion kg). That would result in an average rise in global sea levels of around 0.75 mm a year. For West Antarctica, the estimate was 132 gigatonnes a year. However, it now turns out that these results were not properly corrected for glacial isostatic adjustment, the phenomenon that the Earth's crust rebounds as a result of the melting of the massive ice caps from the last major Ice Age around 20,000 years ago. These movements of the Earth's crust have to be incorporated in the calculations, since these vertical movements change the Earth's mass distribution and therefore also have an influence on the gravitational field.

GPS

Researchers from the Jet Propulsion Laboratory in Pasadena (US), TU Delft and SRON Netherlands Institute for Space Research have now succeeded in carrying out that correction far more accurately. They did so using combined data from the GRACE mission, GPS measurements on land and sea floor pressure measurements. These reveal that the sea floor under Greenland is falling more rapidly than was first thought. One of the researchers, Dr Bert Vermeersen of TU Delft, explains: 'The corrections for deformations of the Earth's crust have a considerable effect on the amount of ice that is estimated to be melting each year. We have concluded that the Greenland and West Antarctica ice caps are melting at approximately half the speed originally predicted.' The average rise in sea levels as a result of the melting ice caps is also lower.

Model

'The innovative aspect of our method is that we simultaneously matched the current changes in the ice mass and glacial isostatic adjustment to the observations, instead of assuming that a particular glacial isostatic adjustment model is correct,' says Dr Vermeersen. 'For Greenland in particular, we have found a glacial isostatic adjustment model that deviates rather sharply from general assumptions. But at present there are too few data available to verify this independently. A more extensive network of GPS readings in combination with geological indicators for the local and regional changes in sea level changes around Greenland over the last 10,000 years, will possibly be able to provide conclusive evidence on this matter in the years to come.'
-end-
More information

This research has been published in the September issue of Nature Geoscience (Nature Geoscience 3, 642 - 646 (2010)). It has also been prepublished online: www.nature.com/ngeo.

Also see 'Sea-level rise: Ice-sheet uncertainty' in de News & Views section in this edition of Nature Geoscience (Nature Geoscience 3, 596 - 597 (2010)) for editorial comments upon the article.

Dr. L.L.A. (Bert) Vermeersen, L.L.A.Vermeersen@tudelft.nl, +31 (0)15 27 88272

Science information officer TU Delft Roy Meijer, r.e.t.meijer@tudelft.nl, +31 (0)15 2781751

Delft University of Technology

Related Sea Levels Articles from Brightsurf:

Climate change responsible for record sea temperature levels, says study
Global warming is driving an unprecedented rise in sea temperatures including in the Mediterranean, according to a major new report published by the peer-reviewed Journal of Operational Oceanography.

New estimates for the rise in sea levels due to ice sheet mass loss under climate change
An international consortium of researchers under the aegis of CMIP6 has calculated new estimates for the melting of Earth's ice sheets due to greenhouse gas emissions and its impact on sea levels, showing that the ice sheets could together contribute more than 40 cm by the end of 2100.

Research sheds new light on the role of sea ice in controlling atmospheric carbon levels
A new study has highlighted the crucial role that sea ice across the Southern Ocean played in controlling atmospheric carbon dioxide levels during times of past climate change, and could provide a critical resource for developing future climate change models.

Seasonal sea ice changes hold clues to controlling CO2 levels, ancient ice shows
New research has shed light on the role sea ice plays in managing atmospheric carbon dioxide levels.

Island 'drowning' is not inevitable as sea levels rise
An international study led by the University of Plymouth (UK) suggests islands composed of gravel material can evolve in the face of overtopping waves, with sediment from the beach face being transferred to the island's surface.

Revealed from ancient sediment: Mangrove tolerance to rising sea levels
The growth and decline of mangrove forests during the final stages of Holocene deglaciation offers a glimpse into how the ecosystems will respond to the rapidly rising seas projected for the future, according to a new study.

Sea otters, opossums and the surprising ways pathogens move from land to sea
A parasite known only to be hosted in North America by the Virginia opossum is infecting sea otters along the West Coast.

UCF study: Sea level rise impacts to Canaveral sea turtle nests will be substantial
The study examined loggerhead and green sea turtle nests to predict beach habitat loss at four national seashores by the year 2100.

Ancient Antarctic ice melt increased sea levels by 3+ meters -- and it could happen again
Rising ocean temperatures drove the melting of Antarctic ice sheets and caused extreme sea level rise more than 100,000 years ago, a new international study led by UNSW Sydney shows - and the scientists say we're headed in that direction again.

SFU research points to unprecedented and worrying rise in sea levels
A new study led by Simon Fraser University's Dean of Science, Professor Paul Kench, has discovered new evidence of sea-level variability in the central Indian Ocean.

Read More: Sea Levels News and Sea Levels Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.