Interrupting death messages to treat bone disease

September 06, 2010

A surface molecule on bacteria that instructs bone cells to die could be the target for new treatments for bone disease, says a scientist speaking at the Society for General Microbiology's autumn meeting today.

Blocking the death signal from bacteria could be a way of treating painful bone infections that are resistant to antibiotics, such as those caused by Meticillin-resistant Staphylococcus aureus (MRSA).

Bone disease, or osteomyelitis, affects 1 in 5,000 people around the world. It can occur at any stage in life and attack any bone in the body, where it leads to progressive bone destruction.

Osteomyelitis is usually caused by the bacterium Staphylococcus aureus that lives commonly on human skin and in the nose. It can reach the bones through open wounds or during surgery and most often causes infections in people with compromised immune systems.

Research led by Dr. Steve Kerrigan from the Royal College of Surgeons in Ireland in collaboration with Trinity College Dublin has revealed that the ability of S. aureus to latch onto bone cells depends on a specific protein called Spa, which is presented on the bacterium's surface. Once attached to the bone cell, the bacteria transmit signals prompting the bone cell to commit suicide. This causes a gradual loss of bone cells leading to progressive bone destruction and weakening of the skeletal system.

Ms Tania Claro who is presenting the group's work explained how the group's findings could lead to new therapies for osteomyelitis. "Bacteria that do not have the Spa protein on their surface are unable to bind to bone cells, which prevents them from sending suicide messages," she said. "Blocking bacterial attachment to cells via Spa could therefore be a way of treating osteomyelitis, or even preventing it in the first place."

Therapies that could effectively prevent and/or treat osteomyelitis could greatly improve the quality of life of sufferers. "This disease is very painful for patients and frustrating for both them and their doctors." explained Ms Claro. Current treatment involves prolonged aggressive antibiotic therapy, however this approach is often less than successful and surgical debridement is required.

New treatments for the disease that do not rely on existing antibiotics would be advantageous. "The danger of invasive bacterial disease is compounded by the rapid emergence of multi-drug resistant bacteria worldwide," explained Ms Claro. "The findings of this study will help develop better diagnostic tools and treatments for osteomyelitis that will not over-rely on antibiotics."
-end-
This work was funded by the Science Foundation of Ireland Research Frontiers programme

Microbiology Society

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.