Nav: Home

Wits University scientists predict the existence of a new boson

September 06, 2016

Scientists at the High Energy Physics Group (HEP) of the University of the Witwatersrand in Johannesburg predict the existence of a new boson that might aid in the understanding of Dark Matter in the Universe.

Using data from a series of experiments that led to the discovery and first exploration of the Higgs boson at the European Organization for Nuclear Research (CERN) in 2012, the group established what they call the Madala hypothesis, in describing a new boson, named as the Madala boson. The experiment was repeated in 2015 and 2016, after a two-and-a-half year shut-down of the Large Hadron Collider (LHC) at CERN. The data reported by the LHC experiments in 2016 have corroborated the features in the data that triggered the Madala hypothesis in the first place.

"Based on a number of features and peculiarities of the data reported by the experiments at the LHC and collected up to the end of 2012, the Wits HEP group in collaboration with scientists in India and Sweden formulated the Madala hypothesis," says Professor Bruce Mellado, team leader of the HEP group at Wits.

The Wits Madala project team consists of approximately 35 young South African and African students and researchers who are currently contributing to the understanding of the data coming out of the LHC experiments, along with phenomenological investigations from theorists such as Prof. Alan Cornell and Dr. Mukesh Kumar and support in the area of detector instrumentation from Prof. Elias Sideras-Haddad (all from Wits University).

The hypothesis describes the existence of a new boson and field, similar to the Higgs boson. However, where the Higgs boson in the Standard Model of Physics only interacts with known matter, the Madala boson interacts with Dark Matter, which makes about 27% of the Universe.

"Physics today is at a crossroads similar to the times of Einstein and the fathers of Quantum Mechanics," says Mellado. "Classical physics failed to explain a number of phenomena and, as a result, it needed to be revolutionised with new concepts, such as relativity and quantum physics, leading to the creation of what we know now as modern physics."

The theory that underpins the understanding of fundamental interactions in nature in modern physics is referred to as the Standard Model of Physics. With the discovery of the Higgs boson at the LHC in 2012, for which the Nobel Prize in Physics was awarded in 2013, the Standard Model of Physics is now complete. However, this model is insufficient to describe a number of phenomena such as Dark Matter.

The universe is made of mass and energy. The mass that we can touch, smell and see, the mass that can be explained by the Higgs boson, makes up only 4% of the mas-energy budget of the Universe. The rest of the mass in the Universe is simply unknown, yet it makes about 27% of the world around us. The next big step for the physics of fundamental interactions now is to understand the nature of Dark Matter in the Universe: what is it made of? How many different types of particles are there? How do they interact among each other? How does it interact with the known matter? What can it tell us about the evolution of the Universe?

The discovery of the Higgs boson at the LHC at CERN has opened the door into making even more ground-breaking discoveries, such as the observation of new bosons that are linked to forces and particles unknown before. These new particles can explain where the unknown matter in the Universe comes from.

"With the Madala hypothesis predictions of striking signatures are made, that is being pursued by the young scientists of the Wits HEP group." Some of these scientists include Dr. Deepak Kar and Dr. Xifeng Ruan, two new academic staff in the group, who have years of expertise at the LHC.
-end-


University of the Witwatersrand

Related Dark Matter Articles:

Looking for dark matter
Dark matter is thought to exist as 'clumps' of tiny particles that pass through the earth, temporarily perturbing some fundamental constants.
New technique looks for dark matter traces in dark places
A new study by scientists at Lawrence Berkeley National Laboratory, UC Berkeley, and the University of Michigan -- published today in the journal Science - concludes that a possible dark matter-related explanation for a mysterious light signature in space is largely ruled out.
Researchers look for dark matter close to home
Eighty-five percent of the universe is composed of dark matter, but we don't know what, exactly, it is.
Galaxy formation simulated without dark matter
For the first time, researchers from the universities of Bonn and Strasbourg have simulated the formation of galaxies in a universe without dark matter.
Taking the temperature of dark matter
Warm, cold, just right? Physicists at UC Davis are using gravitational lensing to take the temperature of dark matter, the mysterious substance that makes up about a quarter of our universe.
New clues on dark matter from the darkest galaxies
Low-surface-brightness (LSB) galaxies offered important confirmations and new information on one of the largest mysteries of the cosmos: dark matter.
A new approach to the hunt for dark matter
A study that takes a novel approach to the search for dark matter has been performed by the BASE Collaboration at CERN working together with a team at the PRISMA+ Cluster of Excellence at Johannes Gutenberg University Mainz (JGU).
Could the mysteries of antimatter and dark matter be linked?
RIKEN researchers and collaborators have performed the first laboratory experiments to determine whether a slightly different way in which matter and antimatter interact with dark matter might be a key to solving both mysteries.
Placing another piece in the dark matter puzzle
A team led by Prof Dmitry Budker has continued their search for dark matter within the framework of the 'Cosmic Axion Spin Precession Experiment' (or 'CASPEr' for short).
Physicists have found a way to 'hear' dark matter
Physicists at Stockholm University and the Max Planck Institute for Physics have turned to plasmas in a proposal that could revolutionise the search for the elusive dark matter.
More Dark Matter News and Dark Matter Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.