Substance in coffee delays onset of diabetes in laboratory mice

September 06, 2017

In recent years, researchers have identified substances in coffee that could help quash the risk of developing Type 2 diabetes. But few of these have been tested in animals. Now in study appearing in ACS' Journal of Natural Products, scientists report that one of these previously untested compounds appears to improve cell function and insulin sensitivity in laboratory mice. The finding could spur the development of new drugs to treat or even prevent the disease.

Some studies suggest that drinking three to four cups of coffee a day can reduce the risk of developing Type 2 diabetes, a disease that afflicts nearly 30 million Americans. Initially, scientists suspected that caffeine was responsible for this effect. But later findings discounted this possibility, suggesting that other substances in coffee may have a more important role. In a previous laboratory study, Fredrik Brustad Mellbye, Søren Gregersen and colleagues found that a compound in coffee called cafestol increased insulin secretion in pancreatic cells when they were exposed to glucose. Cafestol also increased glucose uptake in muscle cells just as effectively as a commonly prescribed antidiabetic drug. In this new study, the researchers wanted to see if cafestol would help prevent or delay the onset of Type 2 diabetes in mice.

The researchers divided mice that are prone to develop Type 2 diabetes into three groups. Two of the groups were fed differing doses of cafestol. After 10 weeks, both sets of cafestol-fed mice had lower blood glucose levels and improved insulin secretory capacity compared to a control group, which was not given the compound. Cafestol also didn't result in hypoglycemia, or low blood sugar, a possible side effect of some antidiabetic medications. The researchers conclude that daily consumption of cafestol can delay the onset of Type 2 diabetes in these mice, and that it is a good candidate for drug development to treat or prevent the disease in humans.
-end-
The authors acknowledge funding from Aarhus University.

The abstract that accompanies this study is available here.

The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us on Twitter | Facebook

American Chemical Society

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.