Nav: Home

Does the organic material of comets predate our solar system?

September 06, 2017

The ESA's Rosetta mission, which ended in September 2016, found that organic matter made up 40% (by mass) of the nucleus of comet 67P Churyumov-Gerasimenko, a.k.a. Chury. Organic compounds, combining carbon, hydrogen, nitrogen, and oxygen, are building blocks of life on Earth. Yet, according to Jean-Loup Bertaux and Rosine Lallement--from the Laboratoire Atmosphères, Milieux, Observations Spatiales (CNRS / UPMC / Université de Versailles Saint-Quentin-en-Yvelines) and the Galaxies, Étoiles, Physique et Instrumentation department of the Paris Observatory (Observatoire de Paris / CNRS / Université Paris Diderot), respectively--these organic molecules were produced in interstellar space, well before the formation of the Solar System. Bertaux and Lallement further assert that astronomers are already familiar with much of this matter.

For 70 years, scientists have known that analysis of stellar spectra indicates unknown absorptions, throughout interstellar space, at specific wavelengths called the diffuse interstellar bands (DIBs). DIBs are attributed to complex organic molecules that US astrophysicist Theodore Snow believes may constitute the largest known reservoir of organic matter in the Universe. This interstellar organic material is usually found in the same proportions. However, very dense clouds of matter like presolar nebulae are exceptions. In the middle of these nebulae, where matter is even denser, DIB absorptions plateau or even drop. This is because the organic molecules responsible for DIBs clump together there. The clumped matter absorbs less radiation than when it floated freely in space.

Such primitive nebulae end up contracting to form a solar system like our own, with planets . . . and comets. The Rosetta mission taught us that comet nuclei form by gentle accretion of grains progressively greater in size. First, small particles stick together into larger grains. These in turn combine into larger chunks, and so on, until they form a comet nucleus a few kilometers wide.

Thus, the organic molecules that formerly populated the primitive nebulae--and that are responsible for DIBs--were probably not destroyed, but instead incorporated into the grains making up cometary nuclei. And there they have remained for 4.6 billion years. A sample-return mission would allow laboratory analysis of cometary organic material and finally reveal the identity of the mysterious interstellar matter underlying observed absorption lines in stellar spectra.

If cometary organic molecules were indeed produced in interstellar space--and if they played a role in the emergence of life on our planet, as scientists believe today--might they not also have seeded life on many other planets of our galaxy?
-end-


CNRS

Related Solar System Articles:

Second alignment plane of solar system discovered
A study of comet motions indicates that the Solar System has a second alignment plane.
Pressure runs high at edge of solar system
Out at the boundary of our solar system, pressure runs high.
What a dying star's ashes tell us about the birth of our solar system
A UA-led team of researchers discovered a dust grain forged in a stellar explosion before our solar system was born.
What scientists found after sifting through dust in the solar system
Two recent studies report discoveries of dust rings in the inner solar system: a dust ring at Mercury's orbit, and a group of never-before-detected asteroids co-orbiting with Venus, supplying the dust in Venus' orbit.
Discovered: The most-distant solar system object ever observed
A team of astronomers has discovered the most-distant body ever observed in our solar system.
Discovery of the first body in the Solar System with an extrasolar origin
Asteroid 2015 BZ509 is the very first object in the Solar System shown to have an extrasolar origin.
First interstellar immigrant discovered in the solar system
A new study has discovered the first known permanent immigrant to our solar system.
A star disturbed the comets of the solar system in prehistory
About 70,000 years ago, when the human species was already on Earth, a small reddish star approached our solar system and gravitationally disturbed comets and asteroids.
Scientists detect comets outside our solar system
Scientists from MIT and other institutions, working closely with amateur astronomers, have spotted the dusty tails of six exocomets -- comets outside our solar system -- orbiting a faint star 800 light years from Earth.
Does the organic material of comets predate our solar system?
The Rosetta space probe discovered a large amount of organic material in the nucleus of comet 'Chury.' In an article published by MNRAS on Aug.
More Solar System News and Solar System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Sound And Silence
Sound surrounds us, from cacophony even to silence. But depending on how we hear, the world can be a different auditory experience for each of us. This hour, TED speakers explore the science of sound. Guests on the show include NPR All Things Considered host Mary Louise Kelly, neuroscientist Jim Hudspeth, writer Rebecca Knill, and sound designer Dallas Taylor.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.