Study quantifies potential for water reuse in permian basin oil production

September 06, 2017

Hydraulic fracturing has once again made the Permian Basin that stretches across western Texas and New Mexico one of the richest oil fields in the world. But the improved reserves come with some serious water management issues. Drilling for oil uses water upfront, and brings up large volumes of water that needs to be managed.

New research led by The University of Texas at Austin Bureau of Economic Geology highlights key differences in water use between conventional drill sites and sites that use hydraulic fracturing, which is rapidly expanding in the Permian.

The study, published in Environmental Science & Technology on Sept. 6, found that recycling the water produced during operations at other hydraulic fracturing sites could help reduce potential problems associated with the technology. These include the need for large upfront water use, and potentially induced seismicity or earthquakes, triggered by injecting the water produced during operations back into the ground.

"What I think may push the reuse of produced water a little more are concerns about over pressuring, and potential induced seismicity," said lead author Bridget Scanlon, a senior research scientist and director of the Bureau's Sustainable Water Resources Program. "In the Permian we have a good opportunity for reusing or recycling produced water for hydraulic fracturing."

Scanlon co-authored the study with Bureau researchers Robert Reedy, Frank Male, and Mark Walsh. The Bureau is research unit of the UT Jackson School of Geosciences.

Since the 1920s, the Permian Basin has been a very active area for conventional oil production, peaking in the 1970s and accounting for almost 20 percent of U.S. oil production. Hydraulic fracturing technology has revived production in that area by allowing companies to tap into immense oil reserves held in less permeable unconventional shale formations. The new technology is turning the conventional play into an unconventional play and has almost brought oil production up to the 1970s peak. The U.S. Geological Survey estimates that Permian's Wolfcamp Shale alone could hold 20 billion barrels of oil, the largest unconventional resource ever evaluated by the Survey.

The study analyzed 10 years-worth of water data from 2005-2015. The researchers tracked how much water was produced and how it was managed from conventional and unconventional wells and compared those volumes to water use for hydraulic fracturing.

Upfront, unconventional wells use much more water than conventional wells. The average volume of water needed per well has increased by about 10 times over the past decade, according to the study, with a median value of 250,000 barrels or 10 million gallons of water used per well in the Midland Basin in 2015. But unconventional wells produce much less water than conventional wells, averaging about 3 barrels of water per barrel of oil versus 13 barrels of water per barrel of oil from conventional wells.

For conventional operations, the produced water is disposed of by injecting it into depleted conventional reservoirs, a process that maintains pressure in the reservoir and can help bring up additional oil through enhanced oil recovery. Unconventional wells generate only about a tenth of the water produced by conventional wells but this "produced water" cannot be injected into the shales because of the low permeability of the shales. The study found that the produced water from unconventional wells is largely injected into non-oil-producing geologic formations--a practice that can increase pressure and could potentially result in induced seismicity or earthquakes.

The study points out that instead of injecting the produced water into these formations, operators could potentially reuse the water from unconventional wells to hydraulically fracture the next set of wells. Enough water is produced in the Midland and Delaware basins in the Permian to support hydraulic fracturing water use, and the water only needs minimal treatment (clean brine) to make it suitable for reuse.

Marc Engle, the chief of a United States Geological Survey program on water use associated with energy production, said that the study provides a comprehensive, data-driven look into how water is managed in the rapidly changing Permian Basin.

"This work by Scanlon et al., for the first time, provides interested stakeholders with a detailed view of water inflows and outflows from the Permian Basin," said Engle. "Moreover, the work captures temporal trends through an important period where the industry shifted from vertical wells in conventional reservoirs to vertical then horizontal wells in continuous reservoirs."

Although there is enough produced water for reuse, Scanlon said that infrastructure, questions about produced water ownership, and low cost of fresh or brackish groundwater may currently keep disposal practices as they are. But as unconventional operations in the Permian grow, reusing produced water may become more attractive.

"Reuse and recycling is an option, and the industry is good at adapting," Scanlon said.
-end-


University of Texas at Austin

Related Hydraulic Fracturing Articles from Brightsurf:

What factors influence the likelihood of fracking-related seismicity in Oklahoma?
The depth of a hydraulic fracturing well in Oklahoma, among other factors, increases the probability that fracking will lead to earthquake activity, according to a new report in the Bulletin of the Seismological Society of America.

Skoltech scientists use ML to optimize hydraulic fracturing design for oil wells
Skoltech researchers and their industry colleagues have created a data-driven model that can forecast the production from an oil well stimulated by multistage fracturing technology.

Fracking chemical may interfere with male sex hormone receptor
A chemical used in hydraulic fracturing, commonly called fracking, has the potential to interfere with reproductive hormones in men, according to research accepted for presentation at ENDO 2020, the Endocrine Society's annual meeting, and publication in a special supplemental section of the Journal of the Endocrine Society.

Paper: Disposal of wastewater from hydraulic fracturing poses dangers to drivers
A new paper co-written by Yilan Xu, a professor of agricultural and consumer economics at the University of Illinois at Urbana-Champaign, shows that the growing traffic burden in shale energy boomtowns from trucks hauling wastewater to disposal sites resulted in a surge of road fatalities and severe accidents.

Water reuse could be key for future of hydraulic fracturing
Enough water will come from the ground as a byproduct of oil production from unconventional reservoirs during the coming decades to theoretically counter the need to use fresh water for hydraulic fracturing operations in many of the nation's large oil-producing areas.

UTA study examines potential sources of groundwater contamination in private wells
A study led by environmental researchers at The University of Texas at Arlington suggests a disconnect between the perception of groundwater contamination and the extent to which that contamination is attributable to oil and natural gas extraction.

Swapping water for CO2 could make fracking greener and more effective
Scientists at the Chinese Academy of Sciences and China University of Petroleum (Beijing) have demonstrated that CO2 may make a better hydraulic fracturing (fracking) fluid than water.

Federal research significant in environmental rule-making
Federally-sponsored science plays a more significant role in bringing together stakeholders and facilitating environmental governance debates than all other types of research, according to an international team of researchers.

Studies link earthquakes to fracking in the central and eastern US
Small earthquakes in Ohio, Pennsylvania, West Virginia, Oklahoma and Texas can be linked to hydraulic fracturing wells in those regions, according to researchers speaking at the SSA 2019 Annual Meeting.

Location of wastewater disposal drives induced seismicity at US oil sites
The depth of the rock layer that serves as the disposal site for wastewater produced during unconventional oil extraction plays a significant role in whether that disposal triggers earthquakes in the US, according to a new study that takes a broad look at the issue.

Read More: Hydraulic Fracturing News and Hydraulic Fracturing Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.