Bio-inspired materials decrease drag for liquids

September 06, 2018

An eco-friendly coating-free strategy has now been developed to make solid surfaces liquid repellent, which is crucial for the transportation of large quantities of liquids through pipes.

Researchers from KAUST's Water Desalination and Reuse Center have engineered nature-inspired surfaces that help to decrease frictional drag at the interface between liquid and pipe surface.

Piping networks are ubiquitous to many industrial processes ranging from the transport of crude and refined petroleum to irrigation and water desalination. However, frictional drag at the liquid-solid interface reduces the efficiency of these processes.

Conventional methods to reduce drag rely solely on chemical coatings, which generally consist of perfluorinated compounds. When applied to rough surfaces, these coatings tend to trap air at the liquid-solid interface, which reduces contact between the liquid and the solid surface. Consequently this enhances the surface omniphobicity, or ability to repel both water- and oil-based liquids.

"But if the coatings get damaged, then you are in trouble," says team leader, Himanshu Mishra, noting that coatings breakdown under abrasive and elevated temperature conditions.

So Mishra's team developed microtextured surfaces that do not require coatings to trap air when immersed in wetting liquids by imitating the omniphobic skins of springtails, or Collembola, which are insect-like organisms found in moist soils. The researchers worked at the KAUST Nanofabrication Core Laboratory to carve arrays of microscopic cavities with mushroom-shaped edges, called doubly reentrant (DRC), on smooth silica surfaces.

"Through the DRC architecture, we could entrap air under wetting liquids for extended periods without using coatings," says co-author Sankara Arunachalam. Unlike simple cylindrical cavities, which were filled in less than 0.1 seconds on immersion in the solvent hexadecane, the biomimetic cavities retained the trapped air beyond 10,000,000 seconds.

To learn more about the long-term entrapment of air, the researchers systematically compared the wetting behavior of circular, square, and hexagonal DRCs. They found that circular DRCs were the best at sustaining the trapped air.

The researchers also discovered that the vapor pressure of the liquids influences this entrapment. For low-vapor pressure liquids, such as hexadecane, the trapped gas was intact for months. For liquids with higher vapor pressure, such as water, capillary condensation inside the cavities disrupted long-term entrapment.

Using these design principles, Mishra's team is exploring scalable approaches to generate mushroom-shaped cavities on to inexpensive materials, such as polyethylene terephthalate, for frictional drag reduction and desalination. "This work has opened several exciting avenues for fundamental and applied research!" Mishra concludes.
-end-


King Abdullah University of Science & Technology (KAUST)

Related Desalination Articles from Brightsurf:

A biomimetic membrane for desalinating seawater on an industrial scale
Reverse osmosis is one of the most widely used techniques for the desalination of water.

The Marangoni Effect can be used to obtain freshwater from the sea
A study conducted at the Politecnico di Torino, in collaboration with the Massachusetts Institute of Technology (MIT), and published in the journal Energy and Environmental Science, presents a solar desalination device capable of spontaneously removing the accumulated salt.

Breakthrough technology purifies water using the power of sunlight
A research team, led by Australia's Monash University, has been able to transform brackish water and seawater into safe, clean drinking water in less than 30 minutes using metal-organic frameworks (MOFs) and sunlight.

How clean water technologies could get a boost from X-ray synchrotrons
In a new perspective, SLAC and University of Paderborn scientists argue that research at synchrotrons could help improve water-purifying materials in ways that might not otherwise be possible.

Solar-driven membrane distillation technology that can double drinking water production
A joint research team from the Korea Institute of Science and Technology (KIST), led by Dr.

Chemists advance solar energy storage aimed at global challenges
Multi-university effort develops solar energy storage to enable decentralized electrification systems in remote areas.

Unorthodox desalination method could transform global water management
Over the past year, Columbia Engineering researchers have been refining their unconventional desalination approach for hypersaline brines -- temperature swing solvent extraction (TSSE) -- that shows great promise for widespread use.

Multifunctional porous carbon fibers show significant promise in capacitive desalination
Researchers have developed a material that is up to 40 times faster in desalinating small batches of water than other materials available today.

KIST ensures stability of desalination process with magnesium
A Korean research team found a method to inhibit the fouling of membranes, which are used in the desalination process that removes salt and dissolved substances from seawater to obtain drinking, domestic, and industrial water.

Harnessing the sun to bring fresh water to remote or disaster-struck communities
Researchers at the University of Bath have developed a revolutionary desalination process that has the potential to be operated in mobile, solar-powered units.

Read More: Desalination News and Desalination Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.