Ocean seep mollusks may share evolutionary history with other deep-sea creatures

September 07, 2006

The unusual mollusks of oceanic cold seeps--strange clams, mussels and sea snails that thrive in the sulfur and methane-rich environments--are on average older than the marine mollusk community as a whole, according to a new report in the 8 September issue of the journal Science, published by AAAS, the nonprofit science society.

On average, the first appearance of cold seep mollusk genera in the geological record is a full epoch earlier than that of marine mollusks in general, according to Steffen Kiel and Crispin Little of the University of Leeds.

These findings indicate that the long evolutionary history of the seep mollusks is more similar to that of other deep-sea animals than to some of their mollusk contemporaries from other parts of the oceans.

Cold seeps may have been--and continue to be--safe harbors for the mollusks, protecting them from mass extinctions and possible abrupt oxygen changes in the seas, the researchers found. However, many deep-sea species outside of the cold seeps have also managed to ride out these changes.

"The shallow water environment is much more challenging, subject to changes in sea levels, extinction events, pollution, sediment runoff--all sorts of factors which don't affect animals in the deep sea," Little explained.

This makes it difficult to tell whether seep mollusks owe their long evolutionary history to their unique home environment or to their status as deep-sea creatures, he noted.

Cold seeps are places where fluids rich in hydrogen sulfide and methane leak up through the ocean floor, creating a unique chemical environment where hardy bacteria process the sulfide and methane. Seep fluids are about the same temperature as surrounding waters, but similar chemically challenging environments exist at hydrothermal vents, fissures in the ocean floor where water is superheated by magma lurking just below the crust.

Although seep and vent fluids are a poisonous brew for most species, animals such as giant tube worms and the mollusks studied by Kiel and Little thrive with the help of the symbiotic bacteria. "If you can become adapted to living at these sites, you can make a very good living indeed," Little said.

The origins and age of seep citizens such as the mollusks has been debated for some time by scientists using both fossil and genetic evidence. Kiel and Little decided to examine the fossil record for modern seep mollusks to see how their history compared to that of the overall marine mollusk population.

By sorting 29 mollusk genera into the geological time periods when they first appeared, the researchers found that seep mollusk genera, on average, appeared during the Eocene epoch about 55 to 34 million years ago. By contrast, the average age of first appearances for all marine mollusks occurred in the Oligocene epoch, about 34 to 24 million years ago.

Following the fortunes of seep mollusks through time, Kiel and Little also found little evidence that mass extinction events or periods of low oxygen dealt significant blows to the seep communities. Seeps may have been good shelters during these events because "they were driven by a constant source of geothermal energy," Little said.

The Eocene age calculated by the Science researchers casts some doubt on another mystery involving seep animals: what is their relationship to whale falls? Whale falls, the slowly decaying remains of large whales sunk to the ocean's depths, harbor yet another unique chemical community similar to that in vents and seeps.

Some researchers suggest that whale falls were evolutionary "stepping stones," creating new environments for seep animals to evolve into a plethora of new species. But Kiel and Little's work shows that more than three-quarters of seep mollusk genera had already appeared by the time oceangoing whales would have filled the seas.

Whale falls "are not instrumental in the evolution" of seep mollusks, but the falls "may have allowed them to expand into new sites," Little explained.

"Cold seep mollusks are older than the general marine mollusk fauna" by Steffen Kiel and Crispin T.S. Littleat the University of Leeds.
-end-
The American Association for the Advancement of Science (AAAS) is the world's largest general scientific society, and publisher of the journal, Science (www.sciencemag.org). AAAS was founded in 1848, and serves some 262 affiliated societies and academies of science, serving 10 million individuals. Science has the largest paid circulation of any peer-reviewed general science journal in the world, with an estimated total readership of one million. The non-profit AAAS (www.aaas.org) is open to all and fulfills its mission to "advance science and serve society" through initiatives in science policy; international programs; science education; and more. For the latest research news, log onto EurekAlert!, www.eurekalert.org, the premier science-news Web site, a service of AAAS.

American Association for the Advancement of Science

Related Ocean Floor Articles from Brightsurf:

Former piece of Pacific Ocean floor imaged deep beneath China
In a study that gives new meaning to the term ''rock bottom,'' seismic researchers have discovered the underside of a rocky slab of Earth's lithosphere that has been pulled more than 400 miles beneath northeastern China by the process of tectonic subduction.

Love waves from the ocean floor
Supercomputer simulations of planetary-scale interactions show how ocean storms and the structure of Earth's upper layers together generate much of the world's seismic waves.

Solving the mystery of carbon on ocean floor
Little bits of black carbon littering the ocean floor, separate and distinct from the organic carbon believed to come from the ocean's surface.

Largest mapping of breathing ocean floor key to understanding global carbon cycle
The largest open-access database of the sediment community oxygen consumption and CO2 respiration is now available.

New threat from ocean acidification emerges in the Southern Ocean
Scientists investigating the effect of ocean acidification on diatoms, a key group of microscopic marine organisms, phytoplankton, say they have identified a new threat from climate change -- ocean acidification is negatively impacting the extent to which diatoms in Southern Ocean waters incorporate silica into their cell walls.

Monitoring CO2 leakage sites on the ocean floor
Injecting carbon dioxide (CO2) deep below the seabed could be an important strategy for mitigating climate change, according to some experts.

Earth recycles ocean floor into diamonds
Most diamonds are made of cooked seabed. The diamond on your finger is most likely made of recycled seabed cooked deep in the Earth.

Otherworldly mirror pools and mesmerizing landscapes discovered on ocean floor
Scientists aboard Schmidt Ocean Institute's research vessel Falkor recently discovered and explored a hydrothermal field at 2,000 meters depth in the Gulf of California where towering mineral structures serve as biological hotspots for life.

MERMAIDs reveal secrets from below the ocean floor
Floating seismometers dubbed MERMAIDs -- Mobile Earthquake Recording in Marine Areas by Independent Divers -- reveal that Galápagos volcanoes are fed by a mantle plume reaching 1,900 km deep.

Delivery method associated with pelvic floor disorders after childbirth
Research completed at Johns Hopkins and the Greater Baltimore Medical Center has demonstrated that vaginal childbirth substantially increases the probability a woman will develop a pelvic floor disorder later in life.

Read More: Ocean Floor News and Ocean Floor Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.