ESA steps towards a great black hole census

September 07, 2006

Astronomers using ESA's orbiting gamma-ray observatory, Integral, have taken an important step towards estimating how many black holes there are in the Universe.

An international team, lead by Eugene Churazov and Rashid Sunyaev, Space Research Institute, Moscow, and involving scientists from all groups of the Integral consortium used the Earth as a giant shield to watch the number of tell-tale gamma rays from the distant Universe dwindle to zero, as our planet blocked their view. "Point Integral anywhere in space and it will measure gamma rays," says Pietro Ubertini, INAF, Italy and Principal Investigator on Integral's gamma-ray imager. Most of those gamma rays do not come from nearby sources but from celestial objects so far away that they cannot yet be distinguished as individual sources. This distant gamma-ray emission creates a perpetual glow that bathes the Universe.

Most astronomers believe that the unseen objects are supermassive black holes, millions or billions of times heavier than the Sun and each sitting at the centre of a galaxy. As the black holes swallow matter, the swirling gases release X-rays and gamma rays. Accurately measuring the glow, known as the X-ray and gamma-ray background, is the first step towards calculating how many black holes are contributing to it and how far away in the Universe they are located.

The new Integral observations were made during January and February 2006 and provide highly accurate data on the gamma-ray background. The key to success was using the Earth as a shield.

Allowing the Earth to enter Integral's field of view goes against the standard set of nominal observations for the satellite, because the optical devices needed to determine the spacecraft's attitude would be blinded by the bright Earth. So, this operation required remarkable efforts from the ISOC/MOC teams operating the mission, who had to rely on alternative spacecraft control mechanisms. But the risk was worth it: by measuring the decrease of the gamma-ray flux once the Earth had blocked Integral's view and by making a model of the Earth's atmospheric emission, the astronomers precisely gauged the gamma-ray background.

Another bonus of the Integral observations is that the observatory's complementary instruments allowed the strength of both X-rays and gamma rays to be measured simultaneously. In the past, different satellites have had to measure the different energies of X-rays and gamma rays, leaving astronomers with the task of having to piece the results together like the pieces of a jigsaw puzzle.

It is not just the overall glow that Integral has seen. Before the satellite's launch, only a few dozen celestial objects were observed in gamma rays. Now Integral sees about 300 individual sources in our Galaxy and around 100 of the brightest supermassive black holes in other galaxies. These are the tip of the iceberg. Astronomers believe there are tens of millions of active black holes spread throughout space, all contributing to the gamma-ray background. From earlier observations in the softer X-ray band it is known that the soft background radiation is almost entirely populated by Active Galactic Nuclei (AGN). So it is highly likely that these objects are also responsible here at higher Integral energies, even if this is not proven yet.

The next step is for astronomers to programme computer models to calculate how the emission from this unseen population of black holes merges to give the observed glow. These computer models will predict the number and distance of the black holes, and provide insights into the way they behave at the centre of young, middle-aged and old galaxies. Meanwhile, the Integral team will continue to refine their measurements of the perplexing gamma-ray background.
-end-
Notes to editors

For more information on these findings see: "Integral observations of the cosmic X-ray background in the 5-100 keV range via occultation by the Earth"
(http://www.arxiv.org/abs/astro-ph/0608250), by Churazov et al.; "Hard X-ray emission of the Earth's atmosphere: Monte Carlo simulations"
(http://www.arxiv.org/abs/astro-ph/0608253), by Sazonov et al.; "Earth X-ray albedo for CXB radiation in the 1-1000 keV band"
(http://www.arxiv.org/abs/astro-ph/0608252), by Churazov et al.

European Space Agency

Related Black Holes Articles from Brightsurf:

The black hole always chirps twice: New clues deciphering the shape of black holes
A team of gravitational-wave scientists led by the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) reveal that when two black holes collide and merge, the remnant black hole 'chirps' not once, but multiple times, emitting gravitational waves--intense ripples in the fabric space and time--that inform us about its shape.

Black holes? They are like a hologram
Spherical, smooth and simple according to the theory of relativity, or extremely complex and full of information as, according to quantum laws, Stephen Hawking used to say?

Under pressure, black holes feast
A new, Yale-led study shows that some supermassive black holes actually thrive under pressure.

Staining cycles with black holes
In the treatment of tumors, microenvironment plays an important role.

Black holes sometimes behave like conventional quantum systems
A group of Skoltech researchers led by Professor Anatoly Dymarsky have studied the emergence of generalized thermal ensembles in quantum systems with additional symmetries.

Scientists may have discovered whole new class of black holes
New research shows that astronomers' search for black holes might have been missing an entire class of black holes that they didn't know existed.

Are black holes made of dark energy?
Two University of Hawaii at Manoa researchers have identified and corrected a subtle error that was made when applying Einstein's equations to model the growth of the universe.

Telescopes in space for even sharper images of black holes
Astronomers have just managed to take the first image of a black hole, and now the next challenge facing them is how to take even sharper images, so that Einstein's Theory of General Relativity can be tested.

Can entangled qubits be used to probe black holes?
Information escapes from black holes via Hawking radiation, so it should be possible to capture it and use it to reconstruct what fell in: if given time longer than the age of the universe.

How black holes power plasma jets
Cosmic robbery powers the jets streaming from a black hole, new simulations reveal.

Read More: Black Holes News and Black Holes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.