Nav: Home

ESA steps towards a great black hole census

September 07, 2006

Astronomers using ESA's orbiting gamma-ray observatory, Integral, have taken an important step towards estimating how many black holes there are in the Universe.

An international team, lead by Eugene Churazov and Rashid Sunyaev, Space Research Institute, Moscow, and involving scientists from all groups of the Integral consortium used the Earth as a giant shield to watch the number of tell-tale gamma rays from the distant Universe dwindle to zero, as our planet blocked their view. "Point Integral anywhere in space and it will measure gamma rays," says Pietro Ubertini, INAF, Italy and Principal Investigator on Integral's gamma-ray imager. Most of those gamma rays do not come from nearby sources but from celestial objects so far away that they cannot yet be distinguished as individual sources. This distant gamma-ray emission creates a perpetual glow that bathes the Universe.

Most astronomers believe that the unseen objects are supermassive black holes, millions or billions of times heavier than the Sun and each sitting at the centre of a galaxy. As the black holes swallow matter, the swirling gases release X-rays and gamma rays. Accurately measuring the glow, known as the X-ray and gamma-ray background, is the first step towards calculating how many black holes are contributing to it and how far away in the Universe they are located.

The new Integral observations were made during January and February 2006 and provide highly accurate data on the gamma-ray background. The key to success was using the Earth as a shield.

Allowing the Earth to enter Integral's field of view goes against the standard set of nominal observations for the satellite, because the optical devices needed to determine the spacecraft's attitude would be blinded by the bright Earth. So, this operation required remarkable efforts from the ISOC/MOC teams operating the mission, who had to rely on alternative spacecraft control mechanisms. But the risk was worth it: by measuring the decrease of the gamma-ray flux once the Earth had blocked Integral's view and by making a model of the Earth's atmospheric emission, the astronomers precisely gauged the gamma-ray background.

Another bonus of the Integral observations is that the observatory's complementary instruments allowed the strength of both X-rays and gamma rays to be measured simultaneously. In the past, different satellites have had to measure the different energies of X-rays and gamma rays, leaving astronomers with the task of having to piece the results together like the pieces of a jigsaw puzzle.

It is not just the overall glow that Integral has seen. Before the satellite's launch, only a few dozen celestial objects were observed in gamma rays. Now Integral sees about 300 individual sources in our Galaxy and around 100 of the brightest supermassive black holes in other galaxies. These are the tip of the iceberg. Astronomers believe there are tens of millions of active black holes spread throughout space, all contributing to the gamma-ray background. From earlier observations in the softer X-ray band it is known that the soft background radiation is almost entirely populated by Active Galactic Nuclei (AGN). So it is highly likely that these objects are also responsible here at higher Integral energies, even if this is not proven yet.

The next step is for astronomers to programme computer models to calculate how the emission from this unseen population of black holes merges to give the observed glow. These computer models will predict the number and distance of the black holes, and provide insights into the way they behave at the centre of young, middle-aged and old galaxies. Meanwhile, the Integral team will continue to refine their measurements of the perplexing gamma-ray background.
-end-
Notes to editors

For more information on these findings see: "Integral observations of the cosmic X-ray background in the 5-100 keV range via occultation by the Earth"
(http://www.arxiv.org/abs/astro-ph/0608250), by Churazov et al.; "Hard X-ray emission of the Earth's atmosphere: Monte Carlo simulations"
(http://www.arxiv.org/abs/astro-ph/0608253), by Sazonov et al.; "Earth X-ray albedo for CXB radiation in the 1-1000 keV band"
(http://www.arxiv.org/abs/astro-ph/0608252), by Churazov et al.

European Space Agency

Related Black Holes Articles:

Supermassive black holes found in 2 tiny galaxies
U astronomers and colleagues have found two ultra-compact dwarf galaxies with supermassive black holes, the second and third such galaxies found to harbor the objects.
Stars born in winds from supermassive black holes
Observations using ESO's Very Large Telescope have revealed stars forming within powerful outflows of material blasted out from supermassive black holes at the cores of galaxies.
Did LIGO detect black holes or gravastars?
After the first direct detection of gravitational waves that was announced last February by the LIGO Scientific Collaboration and made news all over the world, Luciano Rezzolla (Goethe University Frankfurt, Germany) and Cecilia Chirenti (Federal University of ABC in Santo André, Brazil) set out to test whether the observed signal could have been a gravastar or not.
New research reveals hundreds of undiscovered black holes
Computer simulations of a spherical collection of stars known as 'NGC 6101' reveal that it contains hundreds of black holes, until now thought impossible.
Chorus of black holes radiates X-rays
The NuSTAR mission is identifying which black holes erupt with the highest-energy X-rays.
Did the LIGO gravitational waves originate from primordial black holes?
Binary black holes recently discovered by the LIGO-Virgo collaboration could be primordial entities that formed just after the Big Bang, report Japanese astrophysicists.
A new look at the galaxy-shaping power of black holes
Data from a now-defunct satellite is providing new insights into the complex tug-of-war between galaxies, the hot plasma that surrounds them, and the giant black holes that lurk in their centers.
The energy spectrum of particles will help make out black holes
Scientists from MIPT, the Institute for Theoretical and Experimental Physics, and the National Research University Higher School of Economics have devised a method of distinguishing black holes from compact massive objects that are externally indistinguishable from one another.
Using gravitational waves to catch runaway black holes
Black holes are the most powerful gravitational force in the universe.
Black holes and measuring gravitational waves
The supermassive black holes found at the center of every galaxy, including our own Milky Way, may, on average, be smaller than we thought, according to work led by University of Southampton astronomer Dr.

Related Black Holes Reading:

The Little Book of Black Holes (Science Essentials)
by Steven S. Gubser (Author), Frans Pretorius (Author)

Death by Black Hole: And Other Cosmic Quandaries
by Neil deGrasse Tyson (Author)

Black Holes and Time Warps: Einstein's Outrageous Legacy (Commonwealth Fund Book Program)
by Kip S. Thorne (Author), Stephen Hawking (Foreword)

A Black Hole Is Not a Hole
by Carolyn Cinami DeCristofano (Author), Michael Carroll (Illustrator)

Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved
by Marcia Bartusiak (Author)

Black Holes (A True Book)
by Ker Than (Author)

Black Hole Blues and Other Songs from Outer Space
by Janna Levin (Author)

Black Holes: A Very Short Introduction (Very Short Introductions)
by Katherine Blundell (Author)

Black Holes and Baby Universes and Other Essays
by Stephen W. Hawking (Author)

Black Hole (Pantheon Graphic Library)
by Charles Burns (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

The Right To Speak
Should all speech, even the most offensive, be allowed on college campuses? And is hearing from those we deeply disagree with ... worth it? This hour, TED speakers explore the debate over free speech. Guests include recent college graduate Zachary Wood, political scientist Jeffrey Howard, novelist Elif Shafak, and journalist and author James Kirchick.
Now Playing: Science for the People

#486 Volcanoes
This week we're talking volcanoes. Because there are few things that fascinate us more than the amazing, unstoppable power of an erupting volcano. First, Jessica Johnson takes us through the latest activity from the Kilauea volcano in Hawaii to help us understand what's happening with this headline-grabbing volcano. And Janine Krippner joins us to highlight some of the lesser-known volcanoes that can be found in the USA, the different kinds of eruptions we might one day see at them, and how damaging they have the potential to be. Related links: Kilauea status report at USGS A beginner's guide to Hawaii's otherworldly...