Normal role for schizophrenia risk gene identified

September 07, 2007

How the gene that has been pegged as a major risk factor for schizophrenia and other mood disorders that affect millions of Americans contributes to these diseases remains unclear. However, the results of a new study by Hopkins researchers and their colleagues, appearing in Cell this week, provide a big clue by showing what this gene does in normal adult brains.

It turns out that this gene, called disc1, makes a protein that serves as a sort of musical conductor for newly made nerve cells in the adult brain, guiding them to their proper locations at the appropriate tempo so they can seamlessly integrate into our complex and intertwined nervous system. If the DISC1 protein doesn't operate properly, the new nerves go hyper.

"DISC1 plays a broader role in the development of adult nerves than we anticipated," says Hongjun Song, Ph.D., an associate professor at Hopkins' Institute for Cell Engineering. "Some previous studies hinted that DISC1 is important for nerve migration and extension, but our study in mice suggests it is critical for more than that and may highlight why DISC1 is associated with multiple psychiatric disorders."

"Almost every part of the nerve integration process speeds up," adds fellow author Guo-li Ming, M.D., Ph.D., also an associate professor at ICE. "The new nerves migrate and branch out faster than normal, form connections with neighbors more rapidly, and are even more sensitive to electrical stimulation."

While it may not be obvious why high-speed integration would be detrimental, Song notes that because of the complexity of the brain, timing is critical to ensure that new nerves are prepared to plug into the neural network.

Ming, Song and their collaborators at the National Institutes of Health and UC Davis tracked the abnormal movements of the hyperactive nerve cells by injecting a specially designed virus into a part of a mouse brain known as the hippocampus -a region important for learning and memory and therefore quite relevant to psychiatric disorders. The virus would only infect newly born cells and would both knock down the expression of the disc1 gene and make the nerves glow under a microscope.

Combined with other recent Hopkins research that successfully engineered mouse models that have abnormal DISC1 and can effectively reproduce schizophrenia symptoms such as anxiety, hyperactivity, apathy and altered senses, these current findings teasing out the normal role of this protein may help unravel the causes for this complex disease

Song and Ming add that their studies in the hippocampus - one of the few places where new nerves are made in the adult brain - might answer why symptoms typically first appear in adults despite the genetic basis of many psychiatric illnesses. They plan on continuing their mouse work to try and find those answers.
-end-
The research was funded by the National Institutes of Health, McKnight Scholar Award, Whitehall Foundation and a Klingenstein Fellowship Award in the Neurosciences

Authors on the paper are Jay Chang, Sundar Ganesan & Bai Lu of the National Institutes of Mental Health; Regina Faulkner, Xiao-bo Liu & Hwai-Jong Cheng of the University of California, Davis; and Xin Duan, Shaoyu Ge, Ju Young Kim, Yasuji Kitabatake, Chih-Hao Yang, J. Dedrick Jordan, Dengke Ma, Cindy Liu, Guo-li Ming and Hongjun Song of Hopkins.

On the Web:

http://www.hopkins-ice.org/neuro/int/song.html
http://www.cell.org

Media Contacts: Nick Zagorski; 443-287-2251; nzagors1@jhmi.edu
Audrey Huang; 410-614-5105; audrey@jhmi.edu

Johns Hopkins Medicine

Related Schizophrenia Articles from Brightsurf:

Schizophrenia: When the thalamus misleads the ear
Scientists at the University of Geneva (UNIGE) and the Synapsy National Centre of Competence in Research (NCCR) have succeeded in linking the onset of auditory hallucinations - one of the most common symptoms of schizophrenia - with the abnormal development of certain substructures of a region deep in the brain called the thalamus.

Unlocking schizophrenia
New research, led by Prof. LIU Bing and Prof. JIANG Tianzi from the Institute of Automation of the Chinese Academy of Sciences and their collaborators have recently developed a novel imaging marker that may help in the personalized medicine of psychiatric disorders.

Researchers discover second type of schizophrenia
In a study of more than 300 patients from three continents, over one third had brains that looked similar to healthy people.

New clues into the genetic origins of schizophrenia
The first genetic analysis of schizophrenia in an ancestral African population, the South African Xhosa, appears in the Jan.

Dietary supplement may help with schizophrenia
A dietary supplement, sarcosine, may help with schizophrenia as part of a holistic approach complementing antipsychotic medication, according to a UCL researcher.

Schizophrenia: Adolescence is the game-changer
Schizophrenia may be related to the deletion syndrome. However, not everyone who has the syndrome necessarily develops psychotic symptoms.

Study suggests overdiagnosis of schizophrenia
In a small study of patients referred to the Johns Hopkins Early Psychosis Intervention Clinic (EPIC), Johns Hopkins Medicine researchers report that about half the people referred to the clinic with a schizophrenia diagnosis didn't actually have schizophrenia.

The ways of wisdom in schizophrenia
Researchers at UC San Diego School of Medicine report that persons with schizophrenia scored lower on a wisdom assessment than non-psychiatric comparison participants, but that there was considerable variability in levels of wisdom, and those with higher scores displayed fewer psychotic symptoms.

Recognizing the uniqueness of different individuals with schizophrenia
Individuals diagnosed with schizophrenia differ greatly from one another. Researchers from Radboud university medical center, along with colleagues from England and Norway, have demonstrated that very few identical brain differences are shared amongst different patients.

Resynchronizing neurons to erase schizophrenia
Today, a decisive step in understanding schizophrenia has been taken.

Read More: Schizophrenia News and Schizophrenia Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.