Nav: Home

A new way of taming ions can improve future health care

September 07, 2016

A group of researchers at Chalmers University of Technology has discovered a completely new way of using lasers to accelerate ion beams. In time, the new technique could possibly give more people access to advanced cancer treatment. The results were recently published in the high impact journal Physical Review Letters.

Advanced ion technology may in some cases be used to treat otherwise inoperable tumors, such as brain tumors. The treatment involves a concentrated beam of ions that knock out the cancer cells, without damaging the healthy surrounding tissue. This is accomplished by the use of a so-called cyclotron accelerator. Today there are only a few facilities in the world that offer this kind of ion treatment.

"Only very few patients can receive the treatment today because such a facility is not even available in every European country. Using our method to control the ions, the same technology will hopefully in the future be used in equipment that is compact, inexpensive, and easy to use", says professor Mattias Marklund, Head of the Division of Theoretical Physics at Chalmers University of Technology and one of three researchers behind the discovery.

In just a short time he and his colleagues Felix Mackenroth and Arkady Gonoskov developed a novel technique, called "Chirped-Standing-Wave Acceleration", that could be a paradigm shift. The researchers' work is based on a particle accelerator where the ions are accelerated by using a laser, in contrast to conventional accelerators that use electric fields to accelerate ions.

"We knew that a laser could trap electrons but did not know how to move the electrons so that they could drag the ions with them. We found an elegant solution to this puzzle by letting the laser's wavelength vary continuously, in such a way that the ions were accelerated", says Arkady Gonoskov, postdoctoral researcher in physics.

So far there have been only a few ways to accelerate ions using lasers, and none of them could control the ions in an organized and efficient manner.

"It was more like using a sledgehammer. With our method we can capture, stabilize and organize large numbers of ions with great precision without using a lot of energy. This is a small step towards the ultimate goal of treating cancer tumors in a way that provides enormous benefit to society. But we are still far from the ultimate goal", says Felix Mackenroth, postdoctoral researcher in physics.

So far, the method has only been tested with the help of advanced computer simulations, but experiments are planned in cooperation with Lund University.

The research was conducted within the framework of the Pliona project funded by the Knut and Alice Wallenberg Foundation. Umeå University is also participating in the project.

More about: Ion acceleration using lasers

The researchers in the project use a laser to give the ions the right energy, instead of using conventional particle accelerators. They send a laser beam that hits a thin foil. When the foil is hit by the laser pulse the atoms ionize and the material is transformed to a plasma made of charged particles. Some electrons are released and accelerated away. The electric voltage created between the displaced electrons and the positive ions drags the ions out of the material and the process provides them with high energy.
Read the scientific article "Chirped-Standing-Wave Acceleration of Ions with Intense Lasers" in Physical Review Letters:

Read more about the Pliona project:

Chalmers University of Technology

Related Electrons Articles:

Deceleration of runaway electrons paves the way for fusion power
Fusion power has the potential to provide clean and safe energy that is free from carbon dioxide emissions.
Shining light on low-energy electrons
The classic method for studying how electrons interact with matter is by analyzing their scattering through thin layers of a known substance.
Ultrafast nanophotonics: Turmoil in sluggish electrons' existence
An international team of physicists has monitored the scattering behavior of electrons in a non-conducting material in real-time.
NASA mission uncovers a dance of electrons in space
NASA's MMS mission studies how electrons spiral and dive around the planet in a complex dance dictated by the magnetic and electric fields, and a new study revealed a bizarre new type of motion exhibited by these electrons.
'Hot' electrons don't mind the gap
Rice University scientists discover that 'hot' electrons can create a photovoltage about a thousand times larger than ordinary temperature differences in nanoscale gaps in gold wires.
Electrons used to control ultrashort laser pulses
We may soon get better insight into the microcosm and the world of electrons.
Supercool electrons
Study of electron movement on helium may impact the future of quantum computing.
Two electrons go on a quantum walk and end up in a qudit
There is a variety of physical systems that can be used to implement a separate quantum bit, but significantly less research has been done into systems of several qubits or qudits.
Radiation that knocks electrons out and down, one after another
Researchers at Japan's Tohoku University are investigating novel ways by which electrons are knocked out of matter.
Controlling electrons in time and space
A new method has been developed to control electrons being emitted from metal tips.

Related Electrons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...