Nav: Home

Fuel cell membrane patented by Sandia outperforms market

September 07, 2016

ALBUQUERQUE, N.M. -- Fuel cells provide power without pollutants. But, as in the Goldilocks story, membranes in automobile fuel cells work at temperatures either too hot or too cold to be maximally effective. A polyphenyline membrane patented by Sandia National Laboratories, though, seems to work just about right, says Sandia chemist Cy Fujimoto.

The membrane, which operates over a wide temperature range, lasts three times longer than comparable commercial products, Fujimoto and his co-authors say in the Aug. 21 issue of Nature Energy.

Fuel-cell PEMs (proton-exchange membranes) allow the excretion of protons -- the husk, in a sense -- of the material providing the electrons that form the fuel cell's electrical output. If the protons can't pass easily within the cell, the fettered flow reduces the electrical output.

Currently commercial PEMs in most fuel-cell-powered vehicles require water, so their operating temperature can't get higher than water's boiling point. Higher temperatures dry out the membrane, increase cell resistance and reduce performance, said Fujimoto.

"Part of the issues with the current PEMs is that you need to hydrate the hydrogen fuel stream for high performance, and the fuel cell can't run effectively at temperatures higher than the boiling point of water," he said.

"This problem can be solved by employing hydrated fuel streams and having a larger radiator to more effectively dissipate waste heat," Fujimoto continued. "Automakers are doing this now. But if PEM fuel cells didn't need water to run, it would make things a lot simpler."

Another problem is that material costs for the current membrane of choice can be approximately $250-$500 per square meter. "The DOE [Department of Energy] would like to see $5 to $20 a square meter," Fujimoto said.

Researchers have tried to solve these problems with a high-temperature method that uses phosphoric acid to dope a polybenzimidazole membrane at more than 350 degrees Fahrenheit. But the membrane can't operate below 284 degrees without degrading the phosphoric acid. Thus the membrane is unsuitable for automotive applications, where water condensation from cold engine start-ups and other normal reactions at the fuel cell cathode unavoidably bring the temperature down into undesirable ranges that leach the phosphoric acid out of the reaction.

Now comes the first ammonium ion-pair fuel cell -- created at Los Alamos National Laboratory -- to combine phosphates with the Sandia-patented membrane. The ammonium-biphosphate ion pairs have exhibited stable performance over a wide range of temperatures from 176-320 degrees F, responded well to changes in humidity and lasted three times longer than most commercial PEM fuel cell membranes.

"There probably will be industrial interest in this discovery," Fujimoto said. "Our polymer contains a tethered positive charge which interacts more strongly with phosphoric acid, which improves acid retention. Heating the fuel cell and adding humidity doesn't reduce performance."
-end-
The fuel cell work was supported by the Fuel Cell Technology Office of the Department of Energy's Office of Energy Efficiency and Renewable Energy.

Sandia National Laboratories is a multimission laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies and economic competitiveness.

DOE/Sandia National Laboratories

Related Fuel Cell Articles:

How protons move through a fuel cell
Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells.
Microbial fuel cell converts methane to electricity
Transporting methane from gas wellheads to market provides multiple opportunities for this greenhouse gas to leak into the atmosphere.
Stabilizing molecule could pave way for lithium-air fuel cell
Lithium-oxygen fuel cells boast energy density levels comparable to fossil fuels and are thus seen as a promising candidate for future transportation-related energy needs.
How does oxygen get into a fuel cell?
In order for a fuel cell to work, it needs an oxidizing agent.
Petrol and jet fuel alternatives are produced by yeast cell factories
There have been many attempts to modify this stubborn little enzyme, but none have succeeded.
Building a better microbial fuel cell -- using paper
Researchers have made significant progress in developing microbial fuel cells, which rely on bacteria to generate an electrical current, that are cheaper and more efficient.
It's basic: Alternative fuel cell technology reduces cost
The best road to zero-emission vehicles lies in fuel-cell technology, according to the University of Delaware's Yushan Yan.
Fuel cell membrane patented by Sandia outperforms market
Industrial interest is expected in a vehicular fuel cell membrane able to excrete protons at the most effective temperature ranges, allowing electrons to form an unimpeded electric current.
Researchers reduce expensive noble metals for fuel cell reactions
Washington State University researchers have developed a novel nanomaterial that could improve the performance and lower the costs of fuel cells by using fewer precious metals like platinum or palladium.
3-D paper-based microbial fuel cell operating under continuous flow condition
A team of researchers from the Iowa State University in Ames, IA has demonstrated a proof-of-concept three-dimensional paper-based microbial fuel cell (MFC) that could take advantage of capillary action to guide the liquids through the MFC system and to eliminate the need for external power.

Related Fuel Cell Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...