Nav: Home

Breakthrough in materials science: Kiel research team can bond metals with nearly all surfaces

September 07, 2016

Through this "nanoscale-sculpturing" process, metals such as aluminium, titanium, or zinc can permanently be joined with nearly all other materials, become water-repellent, or improve their biocompatibility. The potential spectrum of applications of these "super connections" is extremely broad, ranging from metalwork in industry right through to safer implants in medical technology. Their results have now been published in the prestigious journal Nanoscale Horizons of the Royal Society of Chemistry.

"We have now applied a technology to metals that was previously only known from semiconductors. To use this process in such a way is completely new," said Dr. Jürgen Carstensen, co-author of the publication. In the process, the surface of a metal is converted into a semiconductor, which can be chemically etched and thereby specifically modified as desired. "As such, we have developed a process which - unlike other etching processes - does not damage the metals, and does not affect their stability," emphasised Professor Rainer Adelung, head of the "Functional Nanomaterials" team at the Institute for Materials Science. Adelung stressed the importance of the discovery: "In this way, we can permanently connect metals which could previously not be directly joined, such as copper and aluminium."

How does the "nanoscale-sculpturing" process work exactly?

The surfaces of metals consist of many different crystals and grains, some of which are less chemically stable than others. These unstable particles can be specifically removed from the surface of a metal by a targeted etching. The top surface layer is roughened by the etching process, creating a three-dimensional surface structure. This changes the properties of the surface, but not of the metal as a whole. This is because the etching is only 10 to 20 micrometers deep - a layer as thin as a quarter of the diameter of human hair. The research team has therefore named the process "nanoscale-sculpturing".

The change due to etching is visible to the naked eye: the treated surface becomes matt. "If, for example, we treat a metal with sandpaper, we also achieve a noticeable change in appearance, but this is only two-dimensional, and does not change the characteristics of the surface," explained Dr. Mark-Daniel Gerngross of the research team on materials sciences from Kiel.

Through the etching process, a 3D-structure with tiny hooks is created. If a bonding polymer is then applied between two treated metals, the surfaces inter-lock with each other in all directions like a three-dimensional puzzle. "These 3-D puzzle connections are practically unbreakable. In our experiments, it was usually the metal or polymer that broke, but not the connection itself," said Melike Baytekin-Gerngross, lead author of the publication.

Surfaces with multifunctional properties

Even a thin layer of fat, such as that left by a fingerprint on a surface, does not affect the connection. "In our tests, we even smeared gearbox oil on metal surfaces. The connection still held," explained Baytekin-Gerngross. Laborious cleaning of surfaces, such as the pre-treatment of ships' hulls before they can be painted, could thus be rendered unnecessary.

In addition, the research team exposed the puzzle connections to extreme heat and moisture, to simulate weather conditions. This also did not affect their stability. Carstensen emphasised: "Our connections are extremely robust and weather-resistant." A beneficial side-effect of the process is that the etching makes the surfaces of metal water-repellent. The resulting hook structure functions like a closely-interlocked 3D labyrinth, without holes which can be penetrated by water. The metals therefore possess a kind of built-in corrosion protection. "We actually don't know this kind of behaviour from metals like aluminium. A lotus effect with pure metals, i.e. without applying a water-repellent coating, that is new," said Adelung.

Potentially limitless applications

"The range of potential applications is extremely broad, from metalworking industries such as ship-building or aviation, to printing technology and fire protection, right through to medical applications," said Gerngross. Because the "nanoscale-sculpturing" process not only creates a 3D surface structure, which can be purely physically bonded without chemicals, the targeted etching can also remove harmful particles from the surface, which is of particularly great interest in medical technology.

Titanium is often used for medical implants. To mechanically fix the titanium in place, small quantities of aluminium are added. However, the aluminium can trigger undesirable side-effects in the body. "With our process, we can remove aluminium particles from the surface layer, and thereby obtain a significantly purer surface, which is much more tolerable for the human body. Because we only etch the uppermost layer on a micrometer scale, the stability of the whole implant remains unaffected," explained Carstensen.

The researchers have so far applied for four patents for the process. Businesses have already shown substantial interest in the potential applications. "And our specialist colleagues in materials sciences have also reacted enthusiastically to our discoveries," said a delighted Adelung.
Photos are available to download:
Caption: A strip of aluminium - the surface of which has been treated with an electro-chemical etching process - is permanently bonded with thermoplastic by heating.
Photo/Copyright: Julia Siekmann / Kiel University
Caption: Large metal surfaces can also be treated with nanoscale sculpturing. Although the etching is only applied to a thin layer on a micrometer scale, the resulting change is visible to the naked eye: the treated surface of the aluminium in the foreground has become matt.
Photo/Copyright: Julia Siekmann / Kiel University
Caption: The Kiel-based research team of Melike Baytekin-Gerngroß (on the left), Mark-Daniel Gerngroß, Jürgen Carstensen and Rainer Adelung compares test results in the laboratory.
Photo/Copyright: Julia Siekmann / Kiel University
Caption: Aluminium plates which have only been sandblasted (in the background of the picture) cannot be glued successfully. The two glued plates separate again at the interface between glue and metal - this can be seen by the fact that there is no white glue residue visible on one of the two plates. The aluminium plates in the foreground of the picture were treated with the etching process "nanoscale-sculpturing" before being glued. These plates could also be separated. But the white glue particles left on both plates demonstrate that the bond between metal and glue is not broken, but rather the glue itself.
Photo/Copyright: Julia Siekmann / Kiel University
The targeted etching process of "nanoscale-sculpturing" roughens the upper layer of metal (here aluminium, 20 μm = 0.02 mm), thereby creating a 3D-structure with tiny hooks. A surface treated with this process can inter-lock like a three-dimensional puzzle with the surfaces of almost all other materials, forming unbreakable bonds. With this method, it is even possible to create bonds between aluminium and copper.
Photo/Copyright: Melike Baytekin?Gerngroß
The roughened surface structure of zinc in 10,000x magnification (2 μm = 0.002 mm).
Photo/Copyright: Melike Baytekin?Gerngroß

Kiel University

Related Metals Articles:

Osaka University researchers push metals to their limits
Osaka University-led research team develops a new metal alloy with exceptional mechanical performance at ultrahigh temperatures
New approach improves ability to predict metals' reactions with water
The wide reach of corrosion, a multitrillion-dollar global problem, may someday be narrowed considerably thanks to a new, better approach to predict how metals react with water.
A more sustainable way to refine metals
A team of chemists in Canada has developed a way to process metals without using toxic solvents and reagents.
The incorporation into the body of metals from the River Deba sediments is simulated
Researchers in the UPV/EHU's Department of Chemical Engineering and the Environment have shown that not all the metal contained in the river's sediments directly affects human health but that only a fraction of these metals can be incorporated into the human body.
Study: Toxic metals found in e-cigarette liquids
A study led by researchers at the Johns Hopkins Bloomberg School of Public Health found high levels of toxic metals in the liquid that creates the aerosol that e-cigarette users inhale when they vape.
New method developed for producing some metals
While trying to develop a new battery, MIT researchers find a whole new energy-efficient way to produce some metals without creating air pollution.
Towards the T-1000: Liquid metals propel future electronics
How can we move beyond solid state electronics towards flexible soft circuit systems?
Targeting metals to fight pathogenic bacteria
Researchers at the Laboratory for Molecular Infection Medicine Sweden at UmeƄ University in Sweden participated in the discovery of a unique system of acquisition of essential metals in the pathogenic bacterium Staphylococcus aureus.
Nebraska researcher finds gold -- and other metals
UNL chemist Rebecca Lai is developing inexpensive, portable and reusable sensors that use a component of DNA to detect gold, mercury, silver, lead and other metals.
How true is conventional wisdom about price volatility of tech metals?
Preliminary research by the Colorado School of Mines (Mines) and funded by the Critical Materials Institute (CMI) suggests that conventional wisdom about the high price volatility of by-product metals and minerals is generally true, but with several caveats.

Related Metals Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...