Nav: Home

Scientists work to turn up the heat of brown fat to combat obesity

September 07, 2016

AUGUSTA, Ga. (Sept. 7, 2016) - Scientists are trying to turn up the heat-burning ability of brown fat with the long-term goal of combatting obesity.

Babies and hibernating bears have brown fat to help stay warm and some adults also are lucky enough to have this fat that helps burn instead of store its unhealthy white counterpart.

Now, scientists at the Medical College of Georgia at Augusta University have early evidence that adjusting expression of a gene that plays a role in making brown, white as well as beige fat, also impacts brown fat's heat- and calorie-burning potential.

"Instead of storing fat, brown fat helps you burn it, like a fireplace," said Dr. Weiqin Chen, molecular biologist in the MCG Department of Physiology. Chen is principal investigator on a new two-year American Heart Association grant totaling nearly $160,000 that will help determine how the gene BSCL2, a natural fat regulator, helps stoke those healthy fires.

"What we are trying to do is promote what's called human thermogenesis," Chen said. "While brown fat doesn't really increase your temperature, it helps turn the body into a place that burns rather than stores fat, much like exercise does. That is why it's considered more metabolically active." And while brown fat tends to cluster in the neck and chest regions, it can metabolize the whole body, Chen said.

While work is just beginning on the relationship of BSCL2 and brown fat development and activity, Chen has evidence that the gene's expression is high during development of brown fat and remains relatively high in mature fat. Still, and seemingly ironically, when she deletes it in mature brown fat, mice, at least lose weight.

The magic appears to be in the timing. During development, high expression of BSCL2 appears important for brown fat cells to mature and form a significant, lasting brown tissue mass. When Chen and her team deleted the gene during development, smaller brown fat pads developed that were highly efficient but rapidly burned themselves up. As the mice got older, they also got fat.

But Chen has intriguing preliminary and seemingly counterintuitive data, that at this mature state, deleting the gene from the brown fat can actually make it even more efficient at burning rather than storing fat. And, while the brown fat pads may get slightly smaller, they appear to persist and mice, at least, lose weight.

Now they are putting the mice on a high-fat diet to see if it continues to protect against obesity as the scientists suspect or yields some additional surprising results. With the idea of future regulation in mind, she's also doing high-throughput screening to look at what's changed after the gene is deleted in brown fat, what gets activated when the gene is present and start putting the pieces together. She notes that researchers have not yet looked at whether humans, who are fortunate enough to have brown fat, have high or low expression of BSCL2.

"What regulates it is still a mystery," she said, and in turn, what the gene regulates are questions she wants to answer. "What is the molecular target of this gene?"

The good news is that the gene appears to regulate brown fat without also activating the sympathetic nervous system. There appears to be an additional irony in that the established way to activate brown fat is to also activate the sympathetic nervous system, which is bad for you long term, Chen said. The system drives the so-called fight-or-flight mechanism that gets heart rate and blood pressure up, even dilates the eyes, arousing a hyper-state that is tough on the cardiovascular system.

While they also likely have their own unique signaling pathways, the sympathetic nervous system and BSCL2 have in common working through the signaling pathway cAMP/PKA. While the sympathetic nervous system works by activating cAMP/PKA, BSCL2 works by inhibiting the signaling. But once the brown fat is established, reducing the gene's expression seems to enable cAMP/PKA signaling and increase brown fat efficiency without adversely impacting the heart. Chen notes that while cold exposure enables brown fat development, people who live in these harsh environs tend to have higher rates of stroke and heart attack.

Mutations of BSCL2 gene are associated with Berardinelli-Seip congenital lipodystrophy, a rare condition in which patients essentially have no body fat. Since they lack normal fat deposits all over the body, fat ends up circulating in the blood, depositing in and on major organs like the liver and heart. Despite their trim state, patients often are insulin-resistant, at increased risk for diabetes, have high levels of circulating fats, called triglycerides, heart problems such as heart failure, and more.

"That means it clearly plays a role in fat production and regulation," Chen said of the gene.

She notes that the gene is highly expressed in all types of fat - white, beige and brown - but each of those fat types result from different precursor cells. Interestingly turning down the gene's expression in established, unhealthy white fat can enable the body to make more beige fat, which, like brown fat, tends to have smaller, higher-energy cells. Exercise tends to support conversion of white fat to beige fat. There is some early evidence that brown fat can also pull unhealthy triglycerides out of the bloodstream.
-end-


Medical College of Georgia at Augusta University

Related Blood Pressure Articles:

Do you really have high blood pressure?
A study by researchers at the University of Montreal Hospital Research Centre (CRCHUM) shows that more than half of family doctors in Canada are still using manual devices to measure blood pressure, a dated technology that often leads to misdiagnosis.
Why do we develop high blood pressure?
Abnormally high blood pressure, or hypertension, may be related to changes in brain activity and blood flow early in life.
For some, high blood pressure associated with better survival
Patients with both type 2 diabetes and acute heart failure face a significantly lower risk of death but a higher risk of heart failure-related hospitalizations if they had high systolic blood pressure on discharge from the hospital compared to those with normal blood pressure, according to a study scheduled for presentation at the American College of Cardiology's 66th Annual Scientific Session.
$9.4 million grant helps scientists explore how cell death from high blood pressure fuels even higher pressure
It's been known for decades that a bacterial infection can raise your blood pressure short term, but now scientists are putting together the pieces of how our own dying cells can fuel chronically high, destructive pressure.
Blood pressure diet improves gout blood marker
A diet rich in fruits, vegetables, low-fat dairy and reduced in fats and saturated fats (the DASH diet), designed decades ago to reduce high blood pressure, also appears to significantly lower uric acid, the causative agent of gout.
New tool to improve blood pressure measurement
Oxford University researchers have developed a prediction model that uses three separate blood pressure readings taken in a single consultation and basic patient characteristics to give an adjusted blood pressure reading that is significantly more accurate than existing models for identifying hypertension.
Blood vessels sprout under pressure
It is blood pressure that drives the opening of small capillaries during angiogenesis.
Better blood pressure control -- by mobile phone
An interactive web system with the help of your mobile phone can be an effective tool for better blood pressure control.
Time to reassess blood-pressure goals
High blood pressure or hypertension is a major health problem that affects more than 70 million people in the US, and over one billion worldwide.
With help from pharmacists, better blood pressure costs $22
A pharmacist-physician collaboration in primary-care offices effectively and inexpensively improved patients' high blood pressure.

Related Blood Pressure Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.