Nav: Home

Scientists work to turn up the heat of brown fat to combat obesity

September 07, 2016

AUGUSTA, Ga. (Sept. 7, 2016) - Scientists are trying to turn up the heat-burning ability of brown fat with the long-term goal of combatting obesity.

Babies and hibernating bears have brown fat to help stay warm and some adults also are lucky enough to have this fat that helps burn instead of store its unhealthy white counterpart.

Now, scientists at the Medical College of Georgia at Augusta University have early evidence that adjusting expression of a gene that plays a role in making brown, white as well as beige fat, also impacts brown fat's heat- and calorie-burning potential.

"Instead of storing fat, brown fat helps you burn it, like a fireplace," said Dr. Weiqin Chen, molecular biologist in the MCG Department of Physiology. Chen is principal investigator on a new two-year American Heart Association grant totaling nearly $160,000 that will help determine how the gene BSCL2, a natural fat regulator, helps stoke those healthy fires.

"What we are trying to do is promote what's called human thermogenesis," Chen said. "While brown fat doesn't really increase your temperature, it helps turn the body into a place that burns rather than stores fat, much like exercise does. That is why it's considered more metabolically active." And while brown fat tends to cluster in the neck and chest regions, it can metabolize the whole body, Chen said.

While work is just beginning on the relationship of BSCL2 and brown fat development and activity, Chen has evidence that the gene's expression is high during development of brown fat and remains relatively high in mature fat. Still, and seemingly ironically, when she deletes it in mature brown fat, mice, at least lose weight.

The magic appears to be in the timing. During development, high expression of BSCL2 appears important for brown fat cells to mature and form a significant, lasting brown tissue mass. When Chen and her team deleted the gene during development, smaller brown fat pads developed that were highly efficient but rapidly burned themselves up. As the mice got older, they also got fat.

But Chen has intriguing preliminary and seemingly counterintuitive data, that at this mature state, deleting the gene from the brown fat can actually make it even more efficient at burning rather than storing fat. And, while the brown fat pads may get slightly smaller, they appear to persist and mice, at least, lose weight.

Now they are putting the mice on a high-fat diet to see if it continues to protect against obesity as the scientists suspect or yields some additional surprising results. With the idea of future regulation in mind, she's also doing high-throughput screening to look at what's changed after the gene is deleted in brown fat, what gets activated when the gene is present and start putting the pieces together. She notes that researchers have not yet looked at whether humans, who are fortunate enough to have brown fat, have high or low expression of BSCL2.

"What regulates it is still a mystery," she said, and in turn, what the gene regulates are questions she wants to answer. "What is the molecular target of this gene?"

The good news is that the gene appears to regulate brown fat without also activating the sympathetic nervous system. There appears to be an additional irony in that the established way to activate brown fat is to also activate the sympathetic nervous system, which is bad for you long term, Chen said. The system drives the so-called fight-or-flight mechanism that gets heart rate and blood pressure up, even dilates the eyes, arousing a hyper-state that is tough on the cardiovascular system.

While they also likely have their own unique signaling pathways, the sympathetic nervous system and BSCL2 have in common working through the signaling pathway cAMP/PKA. While the sympathetic nervous system works by activating cAMP/PKA, BSCL2 works by inhibiting the signaling. But once the brown fat is established, reducing the gene's expression seems to enable cAMP/PKA signaling and increase brown fat efficiency without adversely impacting the heart. Chen notes that while cold exposure enables brown fat development, people who live in these harsh environs tend to have higher rates of stroke and heart attack.

Mutations of BSCL2 gene are associated with Berardinelli-Seip congenital lipodystrophy, a rare condition in which patients essentially have no body fat. Since they lack normal fat deposits all over the body, fat ends up circulating in the blood, depositing in and on major organs like the liver and heart. Despite their trim state, patients often are insulin-resistant, at increased risk for diabetes, have high levels of circulating fats, called triglycerides, heart problems such as heart failure, and more.

"That means it clearly plays a role in fat production and regulation," Chen said of the gene.

She notes that the gene is highly expressed in all types of fat - white, beige and brown - but each of those fat types result from different precursor cells. Interestingly turning down the gene's expression in established, unhealthy white fat can enable the body to make more beige fat, which, like brown fat, tends to have smaller, higher-energy cells. Exercise tends to support conversion of white fat to beige fat. There is some early evidence that brown fat can also pull unhealthy triglycerides out of the bloodstream.
-end-


Medical College of Georgia at Augusta University

Related Blood Pressure Articles:

Brain blood flow sensor discovery could aid treatments for high blood pressure & dementia
A study led by researchers at UCL has discovered the mechanism that allows the brain to monitor its own blood supply, a finding in rats which may help to find new treatments for human conditions including hypertension (high blood pressure) and dementia.
Here's something that will raise your blood pressure
The apelin receptor (APJ) has been presumed to play an important role in the contraction of blood vessels involved in blood pressure regulation.
New strategy for treating high blood pressure
The key to treating blood pressure might lie in people who are 'resistant' to developing high blood pressure even when they eat high salt diets, shows new research published today in Experimental Physiology.
Arm cuff blood pressure measurements may fall short for predicting heart disease risk in some people with resistant high blood pressure
A measurement of central blood pressure in people with difficult-to-treat high blood pressure could help reduce risk of heart disease better than traditional arm cuff readings for some patients, according to preliminary research presented at the American Heart Association's Hypertension 2019 Scientific Sessions.
Heating pads may lower blood pressure in people with high blood pressure when lying down
In people with supine hypertension due to autonomic failure, a condition that increases blood pressure when lying down, overnight heat therapy significantly decreased systolic blood pressure compared to a placebo.
The Lancet Neurology: High blood pressure and rising blood pressure between ages 36-53 are associated with smaller brain volume and white matter lesions in later years
A study of the world's oldest, continuously-studied birth cohort tracked blood pressure from early adulthood through to late life and explored its influence on brain pathologies detected using brain scanning in their early 70s.
Blood pressure control is beneficial, is it not?
Until recently, physicians had generally assumed that older adults benefit from keeping their blood pressure below 140/90 mmHg.
The 'blue' in blueberries can help lower blood pressure
A new study published in the Journal of Gerontology Series A has found that eating 200g of blueberries every day for a month can lead to an improvement in blood vessel function and a decrease in systolic blood pressure in healthy people.
How to classify high blood pressure in pregnancy?
The American Heart Association (AHA) and the American College of Cardiology (ACC) changed their guidance to lower the threshold criteria for hypertension in adults.
Discovery could advance blood pressure treatments
A team of Vanderbilt University Medical Center researchers, working with the US Department of Veteran's Affairs (VA), has discovered genetic associations with blood pressure that could guide future treatments for patients with hypertension.
More Blood Pressure News and Blood Pressure Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.