Nav: Home

Tapping the unused potential of photosynthesis

September 07, 2016

Scientists from the University of Southampton have reengineered the fundamental process of photosynthesis to power useful chemical reactions that could be used to produce biofuels, pharmaceuticals and fine chemicals.

Photosynthesis is the pivotal biological reaction on the planet, providing the food we eat, the oxygen we breathe and removing CO2 from the atmosphere.

Photosynthesis in plants and algae consists of two reactions, the light-reactions absorb light energy from the sun and use this to split water (H2O) into electrons, protons and oxygen and the dark-reactions which use the electrons and protons from the light reactions to 'fix' CO2 from the atmosphere into simple sugars that are the basis of the food chain. Importantly, the light reactions have a much higher capacity than the dark reactions resulting in much of the absorbed light energy being wasted as heat rather than being used to 'fix' CO2.

Co-author Dr Adokiye Berepiki, a Postdoctoral Research Fellow from Ocean and Earth Sciences at the University of Southampton, said: "In our study, we used synthetic biology methods to engineer an additional enzyme in-between the light-reactions and before the dark-reactions. We have therefore 'rewired' photosynthesis such that more absorbed light is used to power useful chemical reactions. This study therefore represents an innovation whereby a range of additional valuable chemical reactions can be powered by the sun in plants and algae."

In the study, published in ACS Synthetic Biology, the 'wasted' electrons were rewired to degrade the widespread environmental pollutant atrazine (a herbicide used in agriculture). Atrazine was banned from the EU over 20 years ago but is still one of the most prevalent pesticides in groundwater. The photosynthetic algae designed by the researchers may be used in the efficient bioremediation of such polluted wastewater areas.

Dr Berepiki said: "By taking a synthetic biology approach - combining science, technology and engineering to facilitate and accelerate the design, manufacture and modification of genetic materials in living organisms - we rewired electrons by introducing an enzyme from a brown rat into the photosynthetic machinery. This enzyme, which was encoded by a gene that was produced de novo using chemical synthesis rather than being taken from rat, was then able to serve as an electron sink that used photosynthetic electrons to power its activity."

Co-author Professor Tom Bibby, Professor of Biological Oceanography from Ocean and Earth Sciences at the University of Southampton, said: "There has been much recent research into the potential of using photosynthetic species as sources of sustainable biofuels. While promising, this potential is not yet economically feasible. The 'added value' we have introduced into algal may therefore be a critical step toward the commercial realisation of using photosynthetic species to generate 'biofuels' that may one day replace our current dependence on fossil fuels."
-end-


University of Southampton

Related Photosynthesis Articles:

Scientists design molecular system for artificial photosynthesis
A molecular system for artificial photosynthesis is designed to mimic key functions of the photosynthetic center in green plants -- light absorption, charge separation, and catalysis -- to convert solar energy into chemical energy stored by hydrogen fuel.
Photosynthesis in the dark? Unraveling the mystery of algae evolution
Researchers compared the photosynthetic regulation in glaucophytes with that in cyanobacteria, to elucidate the changes caused by symbiosis in the interaction between photosynthetic electron transfer and other metabolic pathways.
Mechanism behind the electric charges generated by photosynthesis
Photosynthesis requires a mechanism to produce large amounts of chemical energy without losing the oxidative power needed to break down water.
Research shows global photosynthesis on the rise
Researchers found a global historic record by analyzing gases trapped in Antarctic snow to see the rapid rise in photosynthesis over the past 200 years.
Artificial photosynthesis steps into the light
Rice University leads a project to create an efficient, simple-to-manufacture oxygen-evolution catalyst that pairs well with semiconductors for advanced solar cells.
New study shines light on photosynthesis
Researchers have solved a longstanding mystery in photosynthesis, a process used by plants and other organisms to convert light energy into chemical energy.
Study: Viruses support photosynthesis in bacteria -- an evolutionary advantage?
Viruses propagate by infecting a host cell and reproducing inside.
Accelerated chlorophyll reaction in microdroplets to reveal secret of photosynthesis
The research team of DGIST's fellow Hong-Gil Nam, discovered the natural control of chlorophyll activity.
Mechanism for photosynthesis already existed in primeval microbe
A Japanese research team has discovered an evolutionary model for the biological function that creates CO2 from glucose in photosynthesis.
WSU researchers discover unique microbial photosynthesis
Researchers at Washington State University have discovered a new type of cooperative photosynthesis that could be used in engineering microbial communities for waste treatment and bioenergy production.

Related Photosynthesis Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...