Nav: Home

Visualizing the universe

September 07, 2016

If space is the final frontier, OpenSpace could become the final frontier in space simulation software.

Computer scientists from the University of Utah will be working with researchers from New York University's Tandon School of Engineering and the American Museum of Natural History (AMNH) to develop OpenSpace, an open-source 3-D software for visualizing NASA astrophysics, heliophysics, planetary science and Earth science missions for planetariums and other immersive environments. The software also will be developed for use in schools and on home computers.

During a Sept. 12 event at the Hayden Planetarium in the American Museum of Natural History in New York City, an alpha version of OpenSpace will simulate OSIRIS-REx, a mission scheduled to launch this month in which the NASA spacecraft will retrieve an asteroid sample and bring it to Earth.

The University of Utah's renowned Scientific Computing and Imaging Institute (SCI), which produces simulation software for medical and other scientific applications, along with NYU and the Museum have received a $6.3 million grant from NASA to develop OpenSpace so it can be used by students and families as well as planetarium developers. SCI will get about $1.3 million of the grant.

"NASA has an interest in educating the public and reaching out to kids to get them interested in science, technology, engineering and math," said Charles Hansen, a SCI associate director and professor in the University of Utah's School of Computing. "The idea is to take NASA data and have an easy way to present it to the general public so they can see what NASA is doing."

The original idea for OpenSpace and its early proofs-of concept were developed by researchers at Linköping University in Linköping, Sweden, and at AMNH. With the five-year grant, University of Utah computer scientists led by Hansen will help further develop OpenSpace to allow users to pull massive amounts of NASA data about space bodies, phenomenon or probe missions and convert them into striking computer space images in real time. OpenSpace is open-source software, meaning that anyone can use it free of charge.

SCI researchers specialize in creating software that can take huge volumes of data such as weather or traffic data or information about the human anatomy and visualizing it in a simulation without requiring the power of supercomputers. The Scientific Computing and Imaging Institute is comprised of mostly computer scientists from the College of Engineering's School of Computing.

The task for SCI will be to come up with the programming that allows OpenSpace to receive enormous sets of data and instantly covert them to space images on regular PCs, Hansen said. That could give schools with just normal personal computers the power to view space phenomenon including solar winds, nebulae, planets, moons or data from a satellite. With SCI's expertise in computer graphics, the space images also "will be more faithful to the science than what an artist can create," Hansen said.

"You will see where interplanetary space probes are, what their instruments are looking at and what data they're attempting to acquire, all at that very moment," Hansen said.

While he doesn't know exactly when the full version of the OpenSpace software will be completed, Hansen said it will be within the five years of the grant. Users can learn more about OpenSpace and download the current version of the software at
This news release and photos may be downloaded here.

University of Utah

Related Engineering Articles:

Engineering a new cancer detection tool
E. coli may have potentially harmful effects but scientists in Australia have discovered this bacterium produces a toxin which binds to an unusual sugar that is part of carbohydrate structures present on cells not usually produced by healthy cells.
Engineering heart valves for the many
The Wyss Institute for Biologically Inspired Engineering and the University of Zurich announced today a cross-institutional team effort to generate a functional heart valve replacement with the capacity for repair, regeneration, and growth.
Geosciences-inspired engineering
The Mackenzie Dike Swarm and the roughly 120 other known giant dike swarms located across the planet may also provide useful information about efficient extraction of oil and natural gas in today's modern world.
Engineering success
Academically strong, low-income would-be engineers get the boost they need to complete their undergraduate degrees.
HKU Engineering Professor Ron Hui named a Fellow by the UK Royal Academy of Engineering
Professor Ron Hui, Chair Professor of Power Electronics and Philip Wong Wilson Wong Professor of Electrical Engineering at the University of Hong Kong, has been named a Fellow by the Royal Academy of Engineering, UK, one of the most prestigious national academies.
Engineering a better biofuel
The often-maligned E. coli bacteria has powerhouse potential: in the lab, it has the ability to crank out fuels, pharmaceuticals and other useful products at a rapid rate.
Pascali honored for contributions to engineering education
Raresh Pascali, instructional associate professor in the Mechanical Engineering Technology Program at the University of Houston, has been named the 2016 recipient of the Ross Kastor Educator Award.
Scaling up tissue engineering
A team at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A.
Engineering material magic
University of Utah engineers have discovered a new kind of 2-D semiconducting material for electronics that opens the door for much speedier computers and smartphones that also consume a lot less power.
Engineering academic elected a Fellow of the IEEE
A University of Bristol academic has been elected a Fellow of the world's largest and most prestigious professional association for the advancement of technology.

Related Engineering Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...