3-D organoids and RNA sequencing reveal the crosstalk driving lung cell formation

September 07, 2017

To stay healthy, our lungs have to maintain two key populations of cells: the alveolar epithelial cells, which make up the little sacs where gas exchange takes place, and bronchiolar epithelial cells (also known as airway cells) that are lined with smooth muscle.

"We asked, how does a stem cell know whether it wants to make an airway or an alveolar cell?" says Carla Kim, PhD, of the Stem Cell Research Program at Boston Children's Hospital.

Figuring this out could help in developing new treatments for such lung disorders as asthma and emphysema, manipulating the natural system for treatment purposes.

It's been widely assumed that epithelial stem cells direct the formation of these two cell types, but the picture turns out to be more complicated.

To investigate lung-cell formation, Kim and Joo-Hyeon Lee, PhD (now at the Cambridge Stem Cell Institute in the U.K.) used a 3D "organoid" culture system they established in 2014. This allowed them to observe what kinds of cells were being made.

To this, they added single-cell RNA sequencing to see what genes each cell type turns on. This enabled Kim and colleagues to identify what the cells are saying to each other.

As reported today in Cell, they found that lung cells known as mesenchymal cells (not to be confused with mesenchymal stem cells) are the cells driving the action. Through the single-cell RNA sequencing, they further found that mesenchymal cells come in at least five flavors, with different molecular signatures.

"All of these cell types are interacting with each other to repair and regenerate lung tissue," says Kim. "What we learned is that mesenchymal cells are telling the epithelial stem cells what type of lung cell they should make."

Cells with a marker called LGR5 secrete a lot of a molecule called Wnt5A that promotes the formation of alveolar cells, Kim's team showed, while cells with the LGR6 marker are important for repair of airway cells.

"If you have a disease like emphysema or bronchopulmonary dysplasia where alveolar cells are not being repaired, stimulating the WNT pathway could be important," says Kim. "When WNT is blocked, you get the alternate kind of cell. But if you add WNT back in, it goes back to usual."

For airway problems like asthma, blocking WNT or finding a way to boost the formation of LGR6-bearing cells could be approaches to explore to increase production of airway cells. "We found that if you injure mouse lungs so airway cells are killed off, you need LGR6+ cells to repair that kind of damage," Kim says.

But she acknowledges that there's much more to be learned.

"What we really want to know next is, what are all the secreted factors these cells make that can control cell fate? Those could be potential therapeutic targets."
-end-
Joo-Hyeon Lee, PhD, now at the Wellcome Trust, was the study's first author. The work was supported by the Wellcome Trust and the Royal Society (107633/Z/15/Z), the European Research Council (679411), the Cambridge Stem Cell Institute (07922/Z/11/Z), the American Lung Association (400553), the National Institutes of Health (R01 HL090136, R01 HL132266, R01 HL125821, U01 HL100402 RFA- HL-09-004), the Harvard Stem Cell Institute, the Howard Hughes Medical Institute, the Klarman Cell Observatory and the National Cancer Institute (1U24CA180922, P30-CA14051).

Boston Children's Hospital

Related Asthma Articles from Brightsurf:

Breastfeeding and risks of allergies and asthma
In an Acta Paediatrica study, exclusive breastfeeding for the first 3 months was linked with a lower risk of respiratory allergies and asthma when children reached 6 years of age.

Researchers make asthma breakthrough
Researchers from Trinity College Dublin have made a breakthrough that may eventually lead to improved therapeutic options for people living with asthma.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

New knowledge on the development of asthma
Researchers at Karolinska Institutet in Sweden have studied which genes are expressed in overactive immune cells in mice with asthma-like inflammation of the airways.

Eating fish may help prevent asthma
A scientist from James Cook University in Australia says an innovative study has revealed new evidence that eating fish can help prevent asthma.

Academic performance of urban children with asthma worse than peers without asthma
A new study published in Annals of Allergy, Asthma and Immunology shows urban children with poorly controlled asthma, particularly those who are ethnic minorities, also suffer academically.

Asthma Controller Step Down Yardstick -- treatment guidance for when asthma improves
The focus for asthma treatment is often stepping up treatment, but clinicians need to know how to step down therapy when symptoms improve.

Asthma management tools improve asthma control and reduce hospital visits
A set of comprehensive asthma management tools helps decrease asthma-related visits to the emergency department, urgent care or hospital and improves patients' asthma control.

Asthma linked to infertility but not among women taking regular asthma preventers
Women with asthma who only use short-acting asthma relievers take longer to become pregnant than other women, according to research published in the European Respiratory Journal.

What are the best ways to diagnose and manage asthma?
A team of experts from The University of Texas Medical Branch at Galveston examined the current information available from many different sources on diagnosing and managing mild to moderate asthma in adults and summarized them.

Read More: Asthma News and Asthma Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.