UT Austin study raises question: Why are fossilized hairs so rare?

September 07, 2017

When most people hear the word fossil, they probably think of gigantic leg bones or sharp teeth. But, given the right conditions, after an animal dies even delicate body coverings like skin, hair and feathers can be preserved.

New research led by The University of Texas at Austin has found that when it comes to preserving these body parts, fossilized hair is rare--five times rarer than feathers--despite being an important tool for understanding ancient species. This finding has researchers trying to determine if the lack of hair in the fossil record has to do with physical traits that might make it more difficult for hair to fossilize, or an issue with scientists' collection techniques that could lead to them missing important finds.

"This pattern of where and when we do find fossilized feathers and hairs can be used to inform where we look for future fossil discoveries," said first author Chad Eliason, a researcher at the Field Museum of Natural History who conducted the research while a postdoctoral fellow at the UT Jackson School of Geosciences.

The study was published on Sept. 6 in the journal Proceedings of the Royal Society B. Co-authors include Julia Clarke, a professor in the Jackson School's Department of Geological Sciences who led the study, and three Jackson School undergraduate students, Leah Hudson, Taylor Watts and Hector Garza.

Fossils of body coverings contain unique data on the ecology and lifestyle of extinct animals, including what color they might have been. They also might affect our understanding of when kinds of body coverings, such as feathers and hair, evolved. In this study, the researchers used data on fossil type and age to determine that hair probably evolved much earlier than current fossil samples indicate.

Fossil beds that preserve soft tissues like hair and feathers are called lagerstatte ('fossil storehouses' in German) and are rare on their own. The researchers were interested in understanding how frequently different types of body coverings were found preserved in these exceptional sites, which include the Yixian Formation in China and the Green River Formation in the western United States.

Eliason and his collaborators assembled the largest known database of fossilized body coverings, or integument, from land-dwelling vertebrates, a group known as tetrapods, collected from lagerstatte. They found that unlike feathers, hairs are extremely rare finds.

"Mammal hair has been around for more than 160 million years yet over that time we have very few records," Eliason said.

The rarity might be explained by feathers and hair containing different types of the protein keratin, which may impact the likelihood of fossilization. However, the study notes that the lack of hair samples could have nothing to do with fossilization, and be explained by the collecting behavior of paleontologists, with a single feather usually being much easier to identify than a single hair.

The database also allowed the researchers to conduct a type of statistical method called gap analysis, which models the probability of finding a fossil in a given time. The team found that feathers appear to have evolved very close to the earliest known examples in the fossil record, about 165 million years ago. However, hair and hair-like filaments found on pterosaurs probably evolved far earlier in the fossil record than currently known.

"The hunt is on," said Clarke. "These data suggest we might expect to find records up to 100 million years earlier potentially."

The team also applied a statistical approach called a time series analyses to study if climatic factors might explain gaps in the fossil record. They found that soft tissue preservation was most common when ancient sea levels were high.

"There is still a lot we don't know about the chemistry of these deposits and why they are so uneven through time," Clarke said. "But we can say that their uneven distribution across the world--most [sites] are in North America or Eurasia--is an artifact of where paleontologists looked. We have a lot more work to do."
-end-
The National Science Foundation funded the research.

University of Texas at Austin

Related Fossil Articles from Brightsurf:

Fossil shark turns in to mystery pterosaur
Lead author of the project, University of Portsmouth PhD student Roy Smith, discovered the mystery creature amongst fossil collections housed in the Sedgwick Museum of Cambridge and the Booth Museum at Brighton that were assembled when phosphate mining was at its peak in the English Fens between 1851 and 1900.

New fossil seal species rewrites history
An international team of biologists, led by Monash University, has discovered a new species of extinct monk seal from the Southern Hemisphere -- describing it as the biggest breakthrough in seal evolution in 70 years.

How to fix the movement for fossil fuel divestment
Bankers and environmentalists alike are increasingly calling for capital markets to play a bigger role in the war on carbon.

New fossil ape is discovered in India
A 13-million-year-old fossil unearthed in northern India comes from a newly discovered ape, the earliest known ancestor of the modern-day gibbon.

Fossil growth reveals insights into the climate
Panthasaurus maleriensis is an ancestor of today's amphibians and has been considered the most puzzling representative of the Metoposauridae.

Australian fossil reveals new plant species
Fresh examination of an Australian fossil -- believed to be among the earliest plants on Earth -- has revealed evidence of a new plant species that existed in Australia more than 359 Million years ago.

Tracking fossil fuel emissions with carbon-14
Researchers from NOAA and the University of Colorado have devised a breakthrough method for estimating national emissions of carbon dioxide from fossil fuels using ambient air samples and a well-known isotope of carbon that scientists have relied on for decades to date archaeological sites.

Rare lizard fossil preserved in amber
The tiny forefoot of a lizard of the genus Anolis was trapped in amber about 15 to 20 million years ago.

Reconstructing the diet of fossil vertebrates
Paleodietary studies of the fossil record are impeded by a lack of reliable and unequivocal tracers.

Fossil is the oldest-known scorpion
Scientists studying fossils collected 35 years ago have identified them as the oldest-known scorpion species, a prehistoric animal from about 437 million years ago.

Read More: Fossil News and Fossil Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.