Nav: Home

Better understanding of 'one of the most complex organs' for better lung treatments

September 07, 2017

PHILADELPHIA - Details of lung cell molecular pathways that promote or inhibit tissue regeneration were reported by researchers from the Perelmen School of Medicine at the University of Pennsylvania in Cell this week. Their aim is to find new ways to treat lung disorders.

"We need better targets," said senior author Edward E. Morrisey, PhD, a professor of Cell and Developmental Biology, and director of the Penn Center for Pulmonary Biology. "All we have now are blunt sledge hammers that don't work" for conditions such as idiopathic pulmonary fibrosis (IPF), a lung disorder whose cause is poorly understood. Knowing the specific cells and pathways that promote repair and regeneration versus scar formation in the lung will help inform the development of more precise and effective therapies.

In 2012, the annual incidence of idiopathic pulmonary fibrosis in the United States was 16 to 17 per 100,000 people. In the United States alone, that translates into 130,000 to 200,000 people affected by IPF. The lung tissue of a person with pulmonary fibrosis becomes damaged and scarred, with thick, stiff tissue making it difficult for the lungs to expand. As it worsens, the patient often has extreme shortness of breath, and the lung, once damaged, is unable to repair itself.

Chronic obstructive pulmonary disease (COPD) is more common than IPF and is characterized by the loss of gas exchange structures in the lungs called alveoli. In the United States, more than 30 million people are affected by COPD and it is quickly becoming a leading cause of disability and death in the world. The ability to balance regeneration of structures such as alveoli with scar formation is essential for proper maintenance of respiratory function.

"The lung is one of the most complex organs in the human body," Morrisey said, with dozens of cell types, each with specialized roles such as delivering oxygen and eliminating carbon dioxide from blood in the circulatory system (gas exchange). Other cells produce surfactant and mucous to lubricate air spaces for smooth expansion and contraction, and still others create a barrier to pathogens and harmful pollution.

"The complicated structure of lungs is why it is difficult to quickly diagnose the exact type of lung disease a person may have with any certainty," he said. "Also, as there is considerable reserve capacity in our lungs most people are not diagnosed with lung diseases such as IPF until the disease has progressed significantly." This biological compensation mechanism means that a person could lose almost 50 percent of their lung function before feeling any symptoms.

There are many distinct types of lung disorders linked to different cell types, many of which have not been thoroughly studied. The complexity of the lung suggests that the ability to promote repair and regeneration versus contributing to disease-causing lesions may arise from very different cells. For this study, the team focused on mesenchymal cells, which are generally thought to play a supportive role in maintaining lung structure. They found five distinct cell types based on a suite of genes expressed by each. Of these five, they focused on two.

One cell type the Morrisey lab identified in the mouse lung that governs self-renewal of cell populations is called the Mesenchymal Alveolar Niche Cell (MANC). These cells are critical for the regeneration of lung alveoli. The second cell type is called the Axin2+ Myofibrogenic Progenitor cell (AMP), which generates cells called myofibroblasts that form scar tissue after injury, and likely contribute to diseases such as IPF.

The team analyzed what molecules these two cell types secreted and their surface cell receptors and compared this information to databases of known secreted molecules and receptors on adjacent cells. "One of the most important functions of these cells is to balance the repair and regeneration response after injury which occurs often due to the lung's continual assault from the outside environment," Morrisey said.

The "good" MANCs are found in niches or compartments near the alveoli to promote renewal of gas-exchange cells. They may play a key role in maintaining the alveoli during the normal life span of the adult. Dysfunction or loss of MANCs may contribute to diseases such as COPD, which involves loss of alveoli and decreased lung function. The role of the "bad" AMPs is to form scar tissue during wound healing. However, AMPs may grow out of control, potentially leading to diseases such as IPF.

Next, the researchers aim to identify these cell types in humans, working with associate professor of Surgery Edward Cantu, III, MD, the associate surgical director of Lung Transplantation. Morrisey says the Penn team wants to target MANCs for promoting regeneration while inhibiting AMPs to reduce the fibrotic response after injury. Knowing the detailed molecular differences between these two cell types should help in the next generation of targeted therapies such as nanomedicine.
-end-
These studies were supported by funding from the National Institutes of Health (R01-HL132999, R01-533 HL132349, R01-HL087825, U01-HL134745, U01-HL110942, T32-534 HL007843).

Coauthors, all from Penn, are Jarod A. Zepp, William J. Zacharias, David B. Frank, Christina A. Cavanaugh, Su Zhou, and Michael P. Morley.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $6.7 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 20 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $392 million awarded in the 2016 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania and Penn Presbyterian Medical Center -- which are recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report -- Chester County Hospital; Lancaster General Health; Penn Wissahickon Hospice; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2016, Penn Medicine provided $393 million to benefit our community.

University of Pennsylvania School of Medicine

Related Pulmonary Fibrosis Articles:

Collagen-targeting PET probe may improve diagnosis and treatment of pulmonary fibrosis
A PET imaging probe developed by Massachusetts General Hospital investigators appears able to diagnose and stage pulmonary fibrosis -- an often life-shortening lung disease -- as well as monitor the response to treatment.
Antibody is effective against radiation-induced pulmonary fibrosis
Radiation therapy of the lungs often leads to irreversible connective-tissue changes that cause functional impairments in the pulmonary tissue.
Study finds cause of pulmonary fibrosis in failure of stem cells that repair lungs
Cedars-Sinai investigators have pinpointed a major cause of pulmonary fibrosis, a mysterious and deadly disease that scars the lungs and obstructs breathing.
Fat-free mass index predicts survival in patients with Idiopathic pulmonary fibrosis
Researchers have found that fat-free mass index, but not body mass index, was a significant predictor of survival in patients with idiopathic pulmonary fibrosis (IPF), a debilitating form of pneumonia.
Circulating immune cells as biomarkers for idiopathic pulmonary fibrosis
Researchers at Helmholtz Zentrum M√ľnchen, a partner in the German Center for Lung Research, have discovered that the number of myeloid-derived suppressor cells (MDSC) is increased in the blood of patients with idiopathic pulmonary fibrosis.
YEARS algorithm in suspected pulmonary embolism: Towards a reduced rate of pulmonary imaging
Patients with suspected pulmonary embolism often undergo computed tomography pulmonary angiography to confirm or exclude the diagnosis.
Vanderbilt receives major grant to enhance pulmonary fibrosis research
Vanderbilt University Medical Center has received an $11 million program project renewal grant from the National Heart, Lung and Blood Institute to study the genetics and underlying biological mechanisms that lead to idiopathic pulmonary fibrosis.
Pulmonary complications in adult survivors of childhood cancer
A team of researchers from nine leading academic hospitals and research centers have published a paper in the early online edition of the journal Cancer that describes pulmonary outcomes among childhood cancer survivors.
Pulmonary artery stiffening is an early driver of pulmonary hypertension
In this issue of JCI Insight, a team led by Laura Fredenburgh of Brigham and Women's Hospital shows that alterations in pulmonary arterial stiffness occur early during disease and promote vascular remodeling by altering signaling mediated by prostaglandins, a class of hormones that regulate inflammation, smooth muscle contraction, and vasoconstrictoin.
Three-dimensional imaging of idiopathic pulmonary fibrosis
In this issue of JCI Insight, Mark Jones and colleagues at the University of Southampton in Southampton, UK, used a micro-computed tomography method to create three-dimensional images of fibroblastic foci from patients with idiopathic pulmonary fibrosis.

Related Pulmonary Fibrosis Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".