Scientists make methanol using air around us

September 07, 2017

Scientists at Cardiff University have created methanol from methane using oxygen from the air.

Methanol is currently produced by breaking down natural gas at high temperatures into hydrogen gas and carbon monoxide before reassembling them - expensive and energy-intensive processes known as 'steam reforming' and 'methanol synthesis.'

But researchers at Cardiff Catalysis Institute have discovered they can produce methanol from methane through simple catalysis that allows methanol production at low temperatures using oxygen and hydrogen peroxide.

The findings, published today in Science, have major implications for cleaner, greener industrial processes worldwide.

Professor Graham Hutchings, Director of Cardiff Catalysis Institute, said: "The quest to find a more efficient way of producing methanol is a hundred years old. Our process uses oxygen - effectively a 'free' product in the air around us - and combines it with hydrogen peroxide at mild temperatures which require less energy.

"We have already shown that gold nanoparticles supported by titanium oxide could convert methane to methanol, but we simplified the chemistry further and took away the titanium oxide powder. The results have been outstanding.

"Commercialization will take time, but our science has major implications for the preservation of natural gas reserves as fossil fuel stocks dwindle across the world."

"At present global natural gas production is ca. 2.4 billion tons per annum and 4% of this is flared into the atmosphere - roughly 100 million tons. Cardiff Catalysis Institute's approach to using natural gas could use this "waste" gas saving CO2 emissions. In the US there is now a switch to shale gas ,and our approach is well suited to using this gas as it can enable it to be liquefied so it can be readily transported."

Dr. James J. Spivey, Professor of Chemical Engineering at Louisiana State University and Editor-in-Chief of Catalysis Today, said: "This research is of significant value to the scientific and industrial communities. The conversion of our shale resources into higher value intermediates like methanol provide new routes for chemical intermediates."

Cardiff Catalysis Institute has a worldwide reputation for outstanding science. The Institute works with industry to develop new catalytic processes and promote the use of catalysis as a sustainable 21st century technology.
-end-
The paper - Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions - is published in Science - the voice of the American Association for the Advancement of Science (AAAS), the world's oldest and largest general science organization.

Cardiff University

Related Methane Articles from Brightsurf:

When methane-eating microbes eat ammonia instead
As a side effect of their metabolism, microorganisms living on methane can also convert ammonia.

Making more of methane
Looking closely at the chemical process that transforms methane into useful products could help unveil more efficient ways to use natural gas.

Methane: emissions increase and it's not a good news
It is the second greenhouse gas with even a global warming potential larger than CO2.

Measuring methane from space
A group of researchers from Alaska and Germany is reporting for the first time on remote sensing methods that can observe thousands of lakes and thus allow more precise estimates of methane emissions.

New 3D view of methane tracks sources
NASA's new 3-dimensional portrait of methane concentrations shows the world's second largest contributor to greenhouse warming.

Show me the methane
Though not as prevalent in the atmosphere as carbon dioxide, methane is a far more potent greenhouse gas.

Containing methane and its contribution to global warming
Methane is a gas that deserves more attention in the climate debate as it contributes to almost half of human-made global warming in the short-term.

Microorganisms reduce methane release from the ocean
Bacteria in the Pacific Ocean remove large amounts of the greenhouse gas methane.

Origin of massive methane reservoir identified
New research provides evidence of the formation and abundance of abiotic methane -- methane formed by chemical reactions that don't involve organic matter -- on Earth and shows how the gases could have a similar origin on other planets and moons, even those no longer home to liquid water.

Unexpected culprit -- wetlands as source of methane
Knowing how emissions are created can help reduce them.

Read More: Methane News and Methane Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.