Discovery of chromosome motor supports DNA loop extrusion

September 07, 2017

It is one of the great mysteries in biology: how does a cell neatly distribute its replicated DNA between two daughter cells? For more than a century, we have known that DNA in the cell is comparable to a plate of spaghetti: a big jumble of intermingled strands. If a human cell wants to divide, it has to pack two metres of DNA into tidy little packages: chromosomes. This packing occurs using proteins called condensin, but how? When it comes to this question, scientists are split into two camps: the first argues that the protein works like a hook, randomly grasping somewhere in the jumble of DNA and tying it all together. The other camp thinks that the ring-shaped protein pulls the DNA inwards to create a loop. With an article published this week in Science, researchers from TU Delft, Heidelberg and Columbia University give the 'loop-extrustion camp' a significant boost: they demonstrate that condensin does indeed have the putative 'motor power' on board.

Condensation

As early as 1882, the renowned biologist Walter Flemming recorded the process of 'condensation' of DNA. Looking through a microscope, he saw how a cell neatly organised the bundles of DNA and subsequently divided them into two new cells. However, the exact details of this process have remained a mystery for more than 100 years.

DNA loop creators

'There are different schools on this question within the field of cell biology', explains nanobiologist and head of research Cees Dekker from TU Delft's Kavli Institute. 'In recent years, the hypothesis that condensin extrudes loops has been winning ground, supported by computer simulations. The idea is that that the ring-shaped condensin grabs the DNA and pulls it through its ring in a loop-like fashion. This is only possible if the protein has motor activity. One problem with this loop extrusion model was that, up until now, a motor function of this kind had not been detected. In addition, too much energy would be required to pull the loops through the ring, far more than the fuel usage that was observed for condensin', adds Prof Cees Dekker.

Motor function

In their article in Science, the researchers show for the first time that condensin does indeed have a motor function. They positioned DNA molecules that were stretched on a surface and added condensin proteins, each fitted with a light-emitting quantum dot to enable observation. 'We observed how condensin does indeed translocate along the DNA. This only happened if fuel was present, in this case the molecule ATP - the petrol that powers all processes in a cell', explains Jorine Eeftens, graduate student at Delft and one of the first authors. 'The results also show that condensin takes extremely large steps on the DNA, and therefore needs significantly less ATP than previously thought'.

In the second stage of their research, the researchers replaced the light-emitting quantum dot on the condensin with a light-emitting string of DNA. They once again witnessed condensin moving in the same way. Condensin is therefore able to move a piece of DNA in relation to another, which corresponds with the idea of a loop being formed.

'The exact underlying mechanism, so the precise details of how the motor works, is still open to discussion. But this discovery is certainly an enormous boost to the loop extrusion camp. We have also shown that the amount of energy used is a lot less than previously thought', says Cees Dekker.

Medical relevance

The research represents a significant step in the fundamental understanding of our cells, but it is also relevant for medical research. Problems with the protein family to which condensin belongs, the SMC proteins, are related to hereditary conditions such as Cornelia de Lange Syndrome. Condensin is also crucial in the organisation of the chromosomes during cell division, and errors in the process can result in cancer. A better understanding of these processes is vital for tracking down the molecular origins of serious illnesses.
-end-


Delft University of Technology

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.