Nav: Home

Immune cells halt fungal infection by triggering spore suicide

September 07, 2017

To protect the body from infection, immune cells in the lungs can exploit cell death programs in inhaled fungal pathogens, scientists have revealed, helping explain why most people aren't harmed by breathing in mold spores, and potentially offering new therapeutic strategies for people who do get infected. Humans inhale anywhere from 1,000 to 1010 mold spores daily. In order to prevent harmful fungal infection, neutrophils and other immune cells that "devour" cellular bodies help clear inhaled spores from the lungs. However, individuals with immune systems already weakened by tuberculosis, autoimmune disease, AIDS or chemotherapy, to name a few, can more easily contract disease from exposure to mold. To develop effective therapies for these individuals, a clearer picture of anti-fungal immunity is needed. In mice, Neta Shlezinger and colleagues studied how immune cells in the lungs combat Aspergillus fumigatus, the most common mold-related pneumonia worldwide. They discovered that lung neutrophils engulfed the spores and then triggered the fungi's own "programmed cell death" pathway, preventing fungal germination and host invasion. Importantly, the authors also found an A. fumigatus protein called AfBIR1, the fungal equivalent of the human Survivin protein known to suppress cell death and prolong tumor growth, resisted cell death. Mice exposed to spores overexpressing AfBIR1 readily developed fatal fungal infections. Pharmacologic inhibition of BIR1 encoding for AfBIR1 increased fungal cell death and clearance in infected airways, suggesting that blockade of AfBIR1 could be a viable therapeutic approach against invasive aspergillosis.

-end-



American Association for the Advancement of Science

Related Immune Cells Articles:

Immunology: How ancestry shapes our immune cells
A genetic variant that is particularly prevalent in people of African ancestry confers protection against malaria.
Immune cells derived from specialised progenitors
Dendritic cells are gatekeepers of Immunity. Up to now dendritic cell subtypes were thought to develop from one common progenitor.
Comprehensive atlas of immune cells in renal cancer
Researchers from the University of Zurich have individually analyzed millions of immune cells in tumor samples from patients with renal cell carcinoma.
When liver immune cells turn bad
A high-fat diet and obesity turn 'hero' virus-fighting liver immune cells 'rogue,' leading to insulin resistance, a condition that often results in type 2 diabetes, according to research published today in Science Immunology.
New role for immune cells in preventing diabetes and hypertension
Immune cells which are reduced in number by obesity could be a new target to treat diseases such as type 2 diabetes and hypertension that affect overweight people, according to a collaborative study between the University of Manchester, Lund University and the University of Salford.
Why male immune cells are from Mars and female cells are from Venus
Michigan State University researchers are the first to uncover reasons why a specific type of immune cell acts very differently in females compared to males while under stress, resulting in women being more susceptible to certain diseases.
Immune therapy scientists discover distinct cells that block cancer-fighting immune cells
Princess Margaret Cancer Centre scientists have discovered a distinct cell population in tumours that inhibits the body's immune response to fight cancer.
Opioids produce analgesia via immune cells
Opioids are the most powerful painkillers. Researchers at the Charité -- Universitätsmedizin Berlin have now found that the analgesic effects of opioids are not exclusively mediated by opioid receptors in the brain, but can also be mediated via the activation of receptors in immune cells.
Oddly shaped immune cells cause fibrosis
Scientists at the Immunology Frontier Research Center (IFReC) at Osaka University, Japan, report a new group of monocytes they call SatM.
New system developed that can switch on immune cells to attack cancer cells
Researchers have developed an artificial structure that mimics the cell membrane, which can switch on immune cells to attack and destroy a designated target.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: Radiolab

Oliver Sipple
One morning, Oliver Sipple went out for a walk. A couple hours later, to his own surprise, he saved the life of the President of the United States. But in the days that followed, Sipple's split-second act of heroism turned into a rationale for making his personal life into political opportunity. What happens next makes us wonder what a moment, or a movement, or a whole society can demand of one person. And how much is too much?
Now Playing: TED Radio Hour

Future Consequences
From data collection to gene editing to AI, what we once considered science fiction is now becoming reality. This hour, TED speakers explore the future consequences of our present actions. Guests include designer Anab Jain, futurist Juan Enriquez, biologist Paul Knoepfler, and neuroscientist and philosopher Sam Harris.