Holography, light-field technology combo could deliver practical 3-D displays

September 07, 2018

Washington-- While most interaction with digital content is still constrained to keyboards and 2-D touch panels, augmented and virtually reality (AR/VR) technologies promise ever more freedom from these limitations.

AR/VR devices can have their own drawbacks, such as a tendency to induce visual motion sickness or other visual disturbances with prolonged usage due to their stereoscopy or auto-stereoscopy based designs. One promising solution is to adapt holography or light field technology into the devices instead. This, however, requires additional optics that would increase the size, weight, and cost of these devices -- challenges that have so far prevented these devices from achieving commercial success.

Now, a group of researchers in Japan and Belgium has begun to explore a combination of holography and light field technologies as a way to reduce the size and cost of more people-friendly AR/VR devices. They will present their work during The Optical Society's (OSA) Frontiers in Optics meeting, 16-20 September, in Washington, D.C. One of the themes of the meeting is virtual reality and augmented vision, with both a visionary speaker and a series of invited talks on those subjects.

"Objects we see around us scatter light in different directions at different intensities in a way defined by the object's characteristic features--including size, thickness, distance, color, texture," said researcher Boaz Jessie Jackin of the National Institute of Information and Communication Technology in Japan. "The modulated [scattered] light is then received by the human eye and its characteristic features are reconstructed within the human brain."

Devices capable of generating the same modulated light--without the physical object present--are known as true 3-D displays, which includes holography and light-field displays. "Faithfully reproducing all of the object's features, the so-called 'modulation,' is very expensive," said Jackin. "The required modulation is first numerically computed and then converted into light signals by a liquid crystal device (LCD). These light signals are then picked up by other optical components like lenses, mirrors, beam combiners and so on."

The additional optical components, which are usually made of glass, play an important role because they determine the final performance and size of the display device.

This is where holographic optical elements can make a big difference. "A holographic optical element is a thin sheet of photosensitive material--think photographic film--that can replicate the functions of one or more additional optical components," said Jackin. "They aren't bulky or heavy, and can be adapted into smaller form factors. Fabricating them emerged as a new challenge for us here, but we've developed a solution."

Recording, or fabricating, a hologram that can replicate the function of a glass-made optical component requires that particular optical component to be physically present during the recording process. This recording is an analogue process that relies on lasers and recording film; no digital signals or information are used.

"Recording multiple optical components requires that all of them be present in the recording process, which makes it complex and, in most cases, impossible to do," said Jackin.

The group decided to print/record the hologram digitally, calling the solution a "digitally designed holographic optical element" (DDHOE). They use a holographic recording process that requires none of the optical components to be physically present during the recording, yet all the optical components' functions can be recorded.

"The idea is to digitally compute the hologram of all the optical functions [to be recorded and] reconstruct them together optically using a LCD and laser," said Jackin. "This reconstructed optical signal resembles the light that is otherwise modulated by all of those optical components together. The reconstructed light is then used to record the final holographic optical element. Since the reconstructed light had all optical functions, the recorded hologram on the photosensitive film will be able to modulate a light with all of those functions. So all of the additional optics needed can be replaced by a single holographic film."

In terms of applications, the researchers have already put DDHOE to the test on a head-up light field 3-D display. The system is see-through, so it's suitable for augmented reality applications.

"Our system uses a commercially available 2-D projector to display a set of multi-view images onto a micro-lens array sheet--which is usually glass or plastic," said Jackin. "The sheet receives the light from the projector and modulates it to reconstruct the 3-D images in space, so a viewer looking through the micro-lens array perceives the image in 3-D."

One big difficulty their approach overcomes is that light from a 2-D projector diverges and must be made collimated into a parallel beam before it hits the micro-lens array in order to accurately reconstruct the 3-D images in space.

"As displays get larger, the collimating lens should also increase in size. This leads to a bulky and heavy lens, the system consuming long optical path length and also the fabrication of the collimating lens gets costly," said Jackin. "It's the main bottleneck preventing such a system from achieving any commercial success."

Jackin and colleagues' approach completely avoids the requirement of collimation optics by incorporating its function on the lens array itself. The micro-lens array is a fabricated DDHOE, which includes the collimating functions.

The researchers went on to create a head-up, see-through 3-D display, which could soon offer an alternative to the current models that use the bulky collimation optics.
-end-
About FiO + LS

The Optical Society (OSA), in partnership with the American Physical Society's Division of Laser Science (DLS) present OSA Frontiers in Optics + Laser Science APS/DLS. The conference, which serves also as the OSA Annual Meeting, unites communities from both societies for comprehensive and current research in more than 30 optics and photonics topics and across the disciplines of physics, biology and chemistry. Each year, the conference presents supplemental programs organized around four themes--transformative technologies such as automotive optics, quantum technologies and virtual reality. The technical content is complemented by the Science & Industry Showcase, an exhibition with leading optics companies, technology product demonstrations and industry-focused show floor programs. More information at frontiersinoptics.org.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

The Optical Society

Related Hologram Articles from Brightsurf:

An ultrasonic projector for medicine
A chip-based technology that modulates intensive sound pressure profiles with high resolution opens up new possibilities for ultrasound therapy.

Instantaneous color holography system for sensing fluorescence and white light
The National Institute of Information and Communications Technology (NICT), the Japan Science and Technology Agency (JST), Toin University of Yokohama, and Chiba University have succeeded in developing a color-multiplexed holography system by which 3D information of objects illuminated by a white-light lamp and self-luminous specimens are recorded as a single multicolor hologram by a specially designed and developed monochrome image sensor.

Study demonstrates feasibility of hologram technology in liver tumor ablation
Data from one of the first clinical uses of augmented reality guidance with electromagnetically tracked tools shows that the technology may help doctors quickly, safely, and accurately deliver targeted liver cancer treatments, according to a research abstract presented during a virtual session of the Society of Interventional Radiology's 2020 Annual Scientific Meeting on June 14.

Lightning fast algorithms can lighten the load of 3D hologram generation
Tokyo, Japan - Researchers from Tokyo Metropolitan University have developed a new way of calculating simple holograms for heads-up displays (HUDs) and near-eye displays (NEDs).

Black holes? They are like a hologram
Spherical, smooth and simple according to the theory of relativity, or extremely complex and full of information as, according to quantum laws, Stephen Hawking used to say?

A thin lensless camera free of noise
Scientists from Tsinghua University in China and MIT in the US report that applying a compressive sensing algorithm can significantly improve the quality of lensless imaging.

Seeing with electrons: Scientists pave the way to more affordable and accessible cryo-EM
In recent years, a powerful technology called cryogenic electron microscopy (cryo-EM), where flash-frozen samples are embedded in glass-like ice and probed by an electron beam, has revolutionized biomolecule imaging.

Witnessing the birth of baby universes 46 times: The link between gravity and soliton
Scientists have been attempting to come up with an equation to unify the micro and the macro laws of the universe; quantum mechanics and gravity.

As seen in movies, new meta-hologram can be used as a communication tool
Junsuk Rho and his research team developed a multiplexed meta-hologram device operating at visible light.

CUHK Faculty of Engineering develops novel imaging approach
By combining a compressive sensing algorithm with a digital holographic microscope, Prof.

Read More: Hologram News and Hologram Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.