Nav: Home

The role of GABA neurons in the central circadian clock has been discovered

September 07, 2019

The research team led by Dr. Daisuke Ono and Prof. Akihiro Yamanaka of the Graduate School of Medicine, Nagoya University, collaborating with Prof. Ken-ichi Honma and Prof. Sato Honma of Hokkaido University Graduate School of Medicine, and Prof. Yuchio Yanagawa of Gunma University Graduate School of Medicine revealed that inhibitory neurons (GABAergic neurons) of the central circadian clock in the suprachiasmatic nucleus (SCN) refine circadian output rhythms.

Physiology and behavior such as sleep/wakefulness, body temperature, and endocrine functions, exhibit 24-hour oscillations called circadian rhythms. The temporal order of physiology and behavior is regulated by the central circadian clock located in the SCN. Our findings can be developed to understand how the SCN regulates physiological phenomena. Furthermore, it might aid the development of new clinical approaches for a variety of diseases related to the circadian clock. These achievements were published online in Communications Biology on June 21, 2019.

This work was supported in part by The Uehara Memorial Foundation, The Nakajima Foundation, GSK Japan Research Grant 2015, Kowa Life Science Foundation, Takeda Science Foundation, Kato Memorial Bioscience Foundation, the Project for Developing Innovation Systems of the MEXT, and Creation of Innovation Centers for Advanced Interdisciplinary Research Areas Program, Ministry of Education, Culture, Sports, Science and Technology, Japan and JSPS KAKENHI (No. 15H04679, No. 26860156, No. 15K12763, No. 26290002, No. 15H05872, No. 17H05550, No. 18H02477).

Research Background

The temporal order of physiology and behavior in mammals is controlled by the master circadian clock located in the SCN. The SCN generates an endogenous circadian oscillation that entrains a day-night alternation. The SCN is composed of heterogeneous neurons with various neurotransmitters. Of these, an inhibitory neurotransmitter, γ-Amino-Butyric-Acid (GABA) is expressed in almost all SCN neurons; however, its role in circadian physiology is still unclear.

Research Results

In the present study, we examined GABA signaling in the SCN using mice lacking vesicular GABA transporter (VGAT-/-) or a GABA synthesizing enzyme, glutamate decarboxylase (GAD65-/-/67-/-). We simultaneously measured circadian rhythms with a bioluminescence reporter for the clock gene product PER2 (PER2::LUC), spontaneous firing, and intracellular calcium (Ca2+) levels for several circadian cycles in cultured SCN slices of perinatal mice. SCN lacking GABA exhibited burst firing throughout a day. The burst firing was associated with an abrupt increase in intracellular Ca2+, which was synchronous throughout the entire SCN slice. By contrast, the circadian PER2 rhythm was essentially kept intact. We also found that SCN-specific VGAT depletion in adult mice deteriorated the circadian behavioral rhythms.

Research Summary and Future Perspective

In conclusion, GABA is necessary for suppressing the burst firing of neuronal activity and abrupt increases of intracellular Ca2+ levels but not for the generation and stability of the molecular circadian oscillation in the SCN. The GABA network may refine the circadian firing rhythm to ensure noiseless communications with neurons outside the SCN.
-end-
The article, "GABA in the suprachiasmatic nucleus refines circadian output rhythms in mice" has been published online in Communications Biology at DOI: 10.1038/s42003-019-0483-6

Authors: Daisuke Ono, Ken-ichi Honma, Yuchio Yanagawa, Akihiro Yamanaka, and Sato Honma

Nagoya University

Related Neurons Articles:

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.
Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.
How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.
A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.