Nav: Home

The role of GABA neurons in the central circadian clock has been discovered

September 07, 2019

The research team led by Dr. Daisuke Ono and Prof. Akihiro Yamanaka of the Graduate School of Medicine, Nagoya University, collaborating with Prof. Ken-ichi Honma and Prof. Sato Honma of Hokkaido University Graduate School of Medicine, and Prof. Yuchio Yanagawa of Gunma University Graduate School of Medicine revealed that inhibitory neurons (GABAergic neurons) of the central circadian clock in the suprachiasmatic nucleus (SCN) refine circadian output rhythms.

Physiology and behavior such as sleep/wakefulness, body temperature, and endocrine functions, exhibit 24-hour oscillations called circadian rhythms. The temporal order of physiology and behavior is regulated by the central circadian clock located in the SCN. Our findings can be developed to understand how the SCN regulates physiological phenomena. Furthermore, it might aid the development of new clinical approaches for a variety of diseases related to the circadian clock. These achievements were published online in Communications Biology on June 21, 2019.

This work was supported in part by The Uehara Memorial Foundation, The Nakajima Foundation, GSK Japan Research Grant 2015, Kowa Life Science Foundation, Takeda Science Foundation, Kato Memorial Bioscience Foundation, the Project for Developing Innovation Systems of the MEXT, and Creation of Innovation Centers for Advanced Interdisciplinary Research Areas Program, Ministry of Education, Culture, Sports, Science and Technology, Japan and JSPS KAKENHI (No. 15H04679, No. 26860156, No. 15K12763, No. 26290002, No. 15H05872, No. 17H05550, No. 18H02477).

Research Background

The temporal order of physiology and behavior in mammals is controlled by the master circadian clock located in the SCN. The SCN generates an endogenous circadian oscillation that entrains a day-night alternation. The SCN is composed of heterogeneous neurons with various neurotransmitters. Of these, an inhibitory neurotransmitter, γ-Amino-Butyric-Acid (GABA) is expressed in almost all SCN neurons; however, its role in circadian physiology is still unclear.

Research Results

In the present study, we examined GABA signaling in the SCN using mice lacking vesicular GABA transporter (VGAT-/-) or a GABA synthesizing enzyme, glutamate decarboxylase (GAD65-/-/67-/-). We simultaneously measured circadian rhythms with a bioluminescence reporter for the clock gene product PER2 (PER2::LUC), spontaneous firing, and intracellular calcium (Ca2+) levels for several circadian cycles in cultured SCN slices of perinatal mice. SCN lacking GABA exhibited burst firing throughout a day. The burst firing was associated with an abrupt increase in intracellular Ca2+, which was synchronous throughout the entire SCN slice. By contrast, the circadian PER2 rhythm was essentially kept intact. We also found that SCN-specific VGAT depletion in adult mice deteriorated the circadian behavioral rhythms.

Research Summary and Future Perspective

In conclusion, GABA is necessary for suppressing the burst firing of neuronal activity and abrupt increases of intracellular Ca2+ levels but not for the generation and stability of the molecular circadian oscillation in the SCN. The GABA network may refine the circadian firing rhythm to ensure noiseless communications with neurons outside the SCN.
-end-
The article, "GABA in the suprachiasmatic nucleus refines circadian output rhythms in mice" has been published online in Communications Biology at DOI: 10.1038/s42003-019-0483-6

Authors: Daisuke Ono, Ken-ichi Honma, Yuchio Yanagawa, Akihiro Yamanaka, and Sato Honma

Nagoya University

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
Neurons that fire together, don't always wire together
As the adage goes 'neurons that fire together, wire together,' but a new paper published today in Neuron demonstrates that, in addition to response similarity, projection target also constrains local connectivity.
Scientists accidentally reprogram mature mouse GABA neurons into dopaminergic-like neurons
Attempting to make dopamine-producing neurons out of glial cells in mouse brains, a group of researchers instead converted mature inhibitory neurons into dopaminergic cells.
More Neurons News and Neurons Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab