Brain cells found to hold key to growth of certain breast cancers

September 08, 2003

BOSTON--The ability of some breast cancers to grow rapidly and tenaciously may be the result of a survival strategy borrowed from brain cells, scientists at Dana-Farber Cancer Institute have found.

In a study to be published in the Sept. 16 issue of the Proceedings of the National Academy of Science (and now available on the publication's website, www.pnas.org), investigators led by Kornelia Polyak, M.D., Ph.D., report that a protein known to enhance the survival of certain brain cells is present in about 10 percent of invasive breast tumors. The protein, called dermcidin, or DCD, was also found to contribute to cachexia, a muscle-wasting and weight-losing condition that afflicts many cancer patients.

"The fact that DCD protects nerve cells in the brain from damage suggests it may have a similar effect on certain breast cancer cells - by enabling them to grow faster and avoid apoptosis [the natural process that causes cells to die after a set number of divisions]," says Polyak, the study's senior author. "It appears that the same substance that is beneficial in the case of nerve cells can play a harmful role in the development of certain breast cancers."

The discovery of DCD's effect on different types of cells may lead to new ways of treating not only breast cancer but also conditions such as stroke and Alzheimer's disease, which involve the death of large numbers of brain cells.

Polyak and her colleagues decided to focus on DCD after finding it to be especially prevalent in invasive breast cancer cells. Using sophisticated gene-screening techniques, they tested 600 breast tumor samples and determined that although normal breast cells do not contain the protein, it is overabundant in about 10 percent of all invasive breast cancers.

A British research team had previously discovered that only two other types of cells in the body normally produce DCD: nerve cells of the brain and cells of the sweat glands. In both cases, the protein improves the cells' chances of survival by shielding them from damage and accelerating their growth.

With this as a clue, Polyak and her colleagues determined that the protein provides the same service to cells in invasive breast cancers. "We found that when DCD is produced in large amounts, breast tumors tend to be larger and more likely to spread beyond the breast," remarks Polyak, who is also an assistant professor of medicine at Harvard Medical School. "The protein was expressed at these high levels only in invasive tumors, not in early-stage ones."

At the same time, the investigators found that DCD apparently contributes to cachexia. A disorder in which muscle and fat cells essentially digest themselves, leading to a wasting-away of the body, cachexia is one of cancer's most notorious hallmarks. While the precise nature of DCD's involvement in cachexia isn't known, it's clear that the protein has a very different effect on muscle cells than on nerve cells.

The response to DCD, whether in nerve cells or invasive breast cancer cells, is triggered when a chemical signal docks at "receptors" on the cells' surface. Polyak and her associates are currently exploring ways of influencing those receptors. Blocking them in invasive breast cancers may slow the tumors' growth, while stimulating them in patients with stroke or Alzheimer's disease may protect nerve cells from dying.

"DCD's role in a variety of different disorders makes it an attractive target for new therapies," Polyak remarks. "Increasing or decreasing its production in certain sets of cells may offer a promising approach to treatment."
-end-
Co-authors of the study are based at Brigham and Women's Hospital, Harvard Medical School, Harvard School of Public Health, the Comprehensive Cancer Center at the University of California, San Francisco, John Hopkins University, Duke University Medical Center, and the Ardais Corp. of Lexington, Mass.

The study was funded in part by the National Cancer Institute and the National Institute on Aging.

Dana-Farber Cancer Institute is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute.

Dana-Farber Cancer Institute

Related Breast Cancer Articles from Brightsurf:

Oncotarget: IGF2 expression in breast cancer tumors and in breast cancer cells
The Oncotarget authors propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer.

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.

Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.

More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.

Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.

Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.

Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.

Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.

Read More: Breast Cancer News and Breast Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.