Complex cells likely arose from combination of bacterial and extreme-microbe genomes

September 08, 2004

ARLINGTON, Va.-- According to a new report, complex cells like those in the human body probably resulted from the fusion of genomes from an ancient bacterium and a simpler microbe, Archaea, best known for its ability to withstand extreme temperatures and hostile environments. The finding provides strong evidence that complex cells arose from combinations of simpler organisms in a symbiotic effort to survive.

Jim Lake and Maria Rivera, at the University of California-Los Angeles (UCLA), report their finding in the Sept. 9 issue of the journal Nature.

Scientists refer to both bacteria and Archaea as "prokaryotes"--a cell type that has no distinct nucleus to contain the genetic material, DNA, and few other specialized components. More-complex cells, known as "eukaryotes," contain a well-defined nucleus as well as compartmentalized "organelles" that carry out metabolism and transport molecules throughout the cell. Yeast cells are some of the most-primitive eukaryotes, whereas the highly specialized cells of human beings and other mammals are among the most complex.

"A major unsolved question in biology has been where eukaryotes came from, where we came from," Lake said. "The answer is that we have two parents, and we now know who those parents were."

Further, he added, the results provide a new picture of evolutionary pathways. "At least 2 billion years ago, ancestors of these two diverse prokaryotic groups fused their genomes to form the first eukaryote, and in the processes two different branches of the tree of life were fused to form the ring of life," Lake said.

The work is part of an effort supported by the National Science Foundation--the federal agency that supports research and education across all disciplines of science and engineering--to re-examine historical schemes for classifying Earth's living creatures, a process that was once based on easily observable traits. Microbes, plants or animals were said to be related if they shared certain, mostly physical, characteristics. DNA technology now allows much closer scrutiny of hereditary molecules, which provides a more accurate and detailed picture of the genetic relationships between and among living things.

"New computational tools and comparative analyses will undoubtedly find instances in which the evolutionary record will need to be set straight," said James Rodman, a program officer in NSF directorate for biology, which funded the research. "This new fellowship among microbiologists, evolutionists, and computationalists will provide a much fuller picture of the relatedness of living things."

Lake and Rivera analyzed and compared the genomes of 30 microorganisms selected from the three categories (eukaryotes, bacteria and Archaea). All of the microbes contained about the same number of genes. The researchers then used the computer to produce genome combinations that reflected the most likely ancestors of modern eukaryotes. Their analysis, they say, showed that two ancient prokaryotes--one most similar to a bacterium, and one an Archaea--combined genomes out of a mutually advantageous need to survive.

That theory, known as endosymbiosis, has been a popular explanation of how eukaryotic cells acquired smaller components to carry out cellular processes. According to the report, modern eukaryotes obtained genes required to operate the cell from the bacterial side of the family, and the information-carrying genes from the Archaea side.

Further, the authors say, the work also sheds light on the "horizontal" transfer of genes--sideways from organism to organism, rather than from parent to offspring.
-end-
The U.S Department of Energy, the National Institutes of Health, and NASA also supported this work.

NSF Media Contact: Leslie Fink, 703-292-5395, lfink@nsf.gov
UCLA Media Contact: Stuart Wolpert, 310-206-0511, stuartw@college.ucla.edu

Images available: http://www.nsf.gov/od/lpa/newsroom/pr_all_img.cfm?ni=15000000000117

NSF PR04-114

NSF Program Officer: James Rodman, 703-292-8481, jrodman@nsf.gov
Principal Investigator: James Lake, 310-825-2546, lake@mbi.ucla.edu

Additional info:
http://genomics.ucla.edu/
http://www.nsf.gov/bio/deb/deb_sbbi.htm
http://www.nsf.gov/bio/atol/tol.pdf

The National Science Foundation is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.58 billion. National Science Foundation funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 40,000 competitive requests for funding, and makes about 11,000 new funding awards. The National Science Foundation also awards over $200 million in professional and service contracts yearly.

Receive official NSF news electronically through the e-mail delivery and notification system, Custom News Service. To subscribe, enter the NSF Home Page at: http://www.nsf.gov/home/cns/#new and fill in information under "new users."

Useful National Science Foundation Web Sites:
NSF Home Page: http://www.nsf.gov
News Highlights: http://www.nsf.gov/od/lpa
Newsroom: http://www.nsf.gov/od/lpa/news/media/start.htm
Science Statistics: http://www.nsf.gov/sbe/srs/stats.htm
Awards Searches: http://www.fastlane.nsf.gov/a6/A6Start.htm

National Science Foundation

Related Bacterium Articles from Brightsurf:

Root bacterium to fight Alzheimer's
A bacterium found among the soil close to roots of ginseng plants could provide a new approach for the treatment of Alzheimer's.

Tuberculosis bacterium uses sluice to import vitamins
A transport protein that is used by the human pathogen Mycobacterium tuberculosis to import vitamin B12 turns out to be very different from other transport proteins.

Bacterium makes complex loops
A scientific team from the Biosciences and Biotechnology Institute of Aix-Marseille in Saint-Paul lez Durance, in collaboration with researchers from the Max Planck Institute of Colloids and Interfaces in Potsdam and the University of Göttingen, determined the trajectory and swimming speed of the magnetotactic bacterium Magnetococcus marinus, known to move rapidly.

Researchers show how opportunistic bacterium defeats competitors
The researchers discovered that Stenotrophomonas maltophilia uses a secretion system that produces a cocktail of toxins and injects them into other microorganisms with which it competes for space and food.

Genetic typing of a bacterium with biotechnological potential
Researchers at Kanazawa University describe in Scientific Reports the genetic typing of the bacterium Pseudomonas putida.

How the strep bacterium hides from the immune system
A bacterial pathogen that causes strep throat and other illnesses cloaks itself in fragments of red blood cells to evade detection by the host immune system, according to a study publishing December 3 in the journal Cell Reports.

The cholera bacterium can steal up to 150 genes in one go
EPFL scientists have discovered that predatory bacteria like the cholera pathogen can steal up to 150 genes in one go from their neighbors.

Exploiting green tides thanks to a marine bacterium
Ulvan is the principal component of Ulva or 'sea lettuce' which causes algal blooms (green tides).

The cholera bacterium's 3-in-1 toolkit for life in the ocean
The cholera bacterium uses a grappling hook-like appendage to take up DNA, bind to nutritious surfaces and recognize 'family' members, EPFL scientists have found.

Excellent catering: How a bacterium feeds an entire flatworm
In the sandy bottom of warm coastal waters lives Paracatenula -- a small worm that has neither mouth, nor gut.

Read More: Bacterium News and Bacterium Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.