Space: The not-so-final frontier

September 08, 2008

Of all environments, space must be the most hostile: It is freezing cold, close to absolute zero, there is a vacuum, so no oxygen, and the amount of lethal radiation from stars is very high. This is why humans need to be carefully protected when they enter this environment. New research by Ingemar Jönsson and colleagues published in the September 9 issue of Current Biology, a Cell Press journal, shows that some animals --the so-called tardigrades or 'water-bears'-- are able to do away with space suits and can survive exposure to open-space vacuum, cold and radiation.

This is the first time that any animal has been tested for survival under open-space conditions. The test subjects were chosen with great care: Tardigrades --also known as water-bears-- are tiny invertebrate animals from 0.1 to 1.5mm in size that can be easily found on wet lichens and mosses. Because their homes often fall dry, tardigrades are very resistant to drying out and can resurrect after years of dryness. Along with this amazing survival trick comes extreme resistance to heat, cold and radiation --so tardigrades seemed like an ideal animal to test in space.

The dried-up tardigrades were aboard the FOTON-M3 spacecraft launched by the European Space Agency (ESA) in September 2007 and were exposed to open space conditions --i.e. to vacuum, UV radiation from the sun and cosmic radiation-- in a low Earth orbit of around 270km altitude. After their safe return to Earth, it turned out that while most of them survived exposure to vacuum and cosmic rays alone, some had even survived the exposure to the deadly levels of solar UV radiation, which are more than 1000 times higher than on the surface of the Earth. Even more so, the survivors could reproduce fine after their space trip.

The tardigrades extreme resistance to UV radiation is perhaps most surprising. UV rays consist of high-energy light particles that cause severe damage to tissue, as is evident when you get a sun-burn. But more so, they can also damage the cell's genetic material, causing for instance skin cancers. For this reason UV is deadly for most organisms --it is even used as a sterilising agent. As Jönsson and colleagues write: "How these animals were capable of reviving their body after receiving a dose of UV radiation of more than 7000 kJm-2 under space vacuum conditions [...] remains a mystery." It is conceivable that the same cellular adaptations that let them survive drying out might also account for their overall hardiness.
The researchers include K. Ingemar Jönsson, Kristianstad University, Kristianstad, Sweden; Elke Rabbow, Institute of Aerospace Medicine, Radiation Biology Division, Köln, Germany; Ralph O. Schill, Biological Institute, Universität Stuttgart, Stuttgart, Germany; Mats Harms-Ringdahl, Stockholm University, Stockholm, Sweden; and Petra Rettberg, Institute of Aerospace Medicine, Radiation Biology Division, Köln, Germany.

Cell Press

Related Radiation Articles from Brightsurf:

Sheer protection from electromagnetic radiation
A printable ink that is both conductive and transparent can also block radio waves.

What membrane can do in dealing with radiation
USTC recently found that polymethylmethacrylate (PMMA) and polyvinyl chloride (PVC) can release acidic substance under γ radiation, whose amount is proportional to the radiation intensity.

First measurements of radiation levels on the moon
In the current issue (25 September) of the prestigious journal Science Advances, Chinese and German scientists report for the first time on time-resolved measurements of the radiation on the moon.

New biomaterial could shield against harmful radiation
Northwestern University researchers have synthesized a new form of melanin enriched with selenium.

A new way to monitor cancer radiation therapy doses
More than half of all cancer patients undergo radiation therapy and the dose is critical.

Nimotuzumab-cisplatin-radiation versus cisplatin-radiation in HPV negative oropharyngeal cancer
Oncotarget Volume 11, Issue 4: In this study, locally advanced head and neck cancer patients undergoing definitive chemoradiation were randomly allocated to weekly cisplatin - radiation {CRT arm} or nimotuzumab -weekly cisplatin -radiation {NCRT arm}.

Breaking up amino acids with radiation
A new experimental and theoretical study published in EPJ D has shown how the ions formed when electrons collide with one amino acid, glutamine, differ according to the energy of the colliding electrons.

Radiation breaks connections in the brain
One of the potentially life-altering side effects that patients experience after cranial radiotherapy for brain cancer is cognitive impairment.

Fragmenting ions and radiation sensitizers
The anti-cancer drug 5-fluorouracil (5FU) acts as a radiosensitizer: it is rapidly taken up into the DNA of cancer cells, making the cells more sensitive to radiotherapy.

'Seeing the light' behind radiation therapy
Delivering just the right dose of radiation for cancer patients is a delicate balance in their treatment regime.

Read More: Radiation News and Radiation Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to