Golden rods

September 08, 2008

Gold nanoparticles are under consideration for a number of biomedical applications, such as tumor treatment. A German-American research team at Carnegie Mellon University in Pittsburgh, Hunter College in New York, and the RWTH Aachen has now developed a new method for the production of nanoscopic gold rods. In contrast to previous methods, they have achieved this without the use of cytotoxic additives. As they report in the journal Angewandte Chemie, the synthesis is not carried out in water, but in an ionic liquid, a "liquid salt".

Cancer cells are relatively temperature-sensitive. This is exploited in treatments involving overheating of parts of the cancer patient's body. One highly promising method is photoinduced hyperthermia, in which light energy is converted to heat. Gold nanoparticles absorb light very strongly in the near infrared, a spectral region that is barely absorbed by tissue. The absorbed light energy causes the gold particles to vibrate and is dissipated into the surrounding area as heat. The tiny gold particles can be functionalized so that the specifically bind to tumor cells. Thus, only cells that contain gold particles are killed off.

The problem? Ordinary spherical gold particles do not efficiently convert the light energy into heat; only rod-shaped particles will do. Unfortunately, the additives needed to crystallize the rod-shaped particles from aqueous solutions are cytotoxic.

The team headed by Michael R. Bockstaller is now pursuing a new strategy: instead of aqueous solution, they chose to use an ionic liquid as their medium of crystallization. Ionic liquids are "liquid salts", organic compounds that exist as oppositely charged ions, but in the liquid state. In this way, the researchers have been able to produce gold nanorods without the use of any cytotoxic additives.

In the first step, seed crystals are produced in the form of tiny spherical gold particles. These crystals are added to a "secondary growth solution" containing monovalent gold ions, silver ions, and the weak reducing agent ascorbic acid. The solvent is an imidazolium-based ionic liquid. In this medium, the crystals don't continue to grow into spheres; instead they form rods with the round crystallization nuclei as "heads". The mechanism is presumed to involve the various, energetically inequivalent surfaces of the crystal lattice: the aromatic, nitrogen-containing five-membered rings of the ionic liquid prefer to accumulate at the highly energetic facets of gold surfaces. They thus stabilize crystal shapes that have fewer low-energy facets than the normal spherical equilibrium form. This results in long rods.
Author: Michael R. Bockstaller, Carnegie Mellon University, Pittsburgh (USA),
Title: Imidazolium-Based Ionic Liquids as Efficient Shape-Regulating Solvents for the Synthesis of Gold Nanorods
Angewandte Chemie International Edition 2008, 47, No. 40, doi: 10.1002/anie.200802185


Related Gold Nanoparticles Articles from Brightsurf:

Gold nanoparticles turn the spotlight on drug candidates in cells
A team including researchers from Osaka University has developed a surface-enhanced Raman scattering (SERS) microscopy technique for tracking small molecules in live cells.

Dipanjan Pan demonstrates new method to produce gold nanoparticles in cancer cells
Researchers published a seminal study in Nature Communications that demonstrates for the first time a method of biosynthesizing plasmonic gold nanoparticles within cancer cells, without the need for conventional bench-top lab methods.

From nanocellulose to gold
When nanocellulose is combined with various types of metal nanoparticles, materials are formed with many new and exciting properties.

Gold nanoparticles to save neurons from cell death
An international research team coordinated by Istituto Italiano di Tecnologia in Lecce (Italy) has developed gold nanoparticles able to reduce the cell death of neurons exposed to overexcitement.

A potential breakthrough in obesity medicine with the help of gold nanoparticles
A team of researchers in Korea believes to have discovered a synthetic gold-based compound which may help patients with obesity.

Peppered with gold
Terahertz waves are becoming more important in science and technology.

Gold nanoparticles uncover amyloid fibrils
EPFL scientists have developed powerful tools to unmask the diversity of amyloid fibrils, which are associated with Alzheimer's disease and other neurodegenerative disorders.

Gold nanoparticles detect signals from cancer cells
A novel blood test that uses gold nanoparticles to detect cancer has also been shown to identify signals released by cancer cells.

What happens to gold nanoparticles in cells?
Gold nanoparticles, which are supposed to be stable in biological environments, can be degraded inside cells.

Gold nanoparticles shown to be safe and effective treatment for prostate cancer
Bio-compatible gold nanoparticles designed to convert near-infrared light to heat have been shown to safely and effectively ablate low- to intermediate-grade tumors within the prostate, according to a study conducted at the Icahn School of Medicine and published in the journal Proceedings of the National Academy of Sciences.

Read More: Gold Nanoparticles News and Gold Nanoparticles Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to