Nav: Home

Genome of the world's largest bony fish may explain fast growth rate and large size

September 08, 2016

The genome of the ocean sunfish (Mola mola), the world's largest bony fish, has been sequenced for the first time by researchers from China National Genebank at BGI-Shenzhen and A*STAR, Singapore. The researchers, who include Nobel Laureate Sydney Brenner, publish their results in the open access journal GigaScience. The ocean sunfish genome revealed several altered genes that may explain the fast growth rate and large size of the fish as well as its unusual endoskeleton.

The ocean sunfish, which can be found in tropical and temperate sea zones such as the Mediterranean and the Atlantic, can grow up to a length of 2.7m and weigh 2.3 tons. Even though its diet, which consists mostly of jellyfish, is nutritionally poor, the ocean sunfish grows at an unusually fast rate of almost one kilogram per day - other fishes grow at 0.02 to 0.5 kilogram per day. As well as the extreme growth rate, females can produce more eggs than any other known vertebrate (up to 300,000,000 at a time). The ocean sunfish lacks a tail giving it a truncated appearance.

Byrappa Venkatesh, who initiated and co-led the project from A*STAR, said: "We sequenced the pufferfish (Takifugu rubripes) genome in 2002, the second vertebrate genome to be sequenced. Pufferfish and ocean sunfish belong to the same Order but differ dramatically in morphology. So we were keen to sequence the ocean sunfish genome and compare it with the pufferfish genome, to identify genetic changes that have occurred in the ocean sunfish lineage and that might give clues to the highly derived phenotype of the ocean sunfish."

The researchers hypothesized that the ocean sunfish's unusual appearance may be due to the loss of HOX genes that control the body plan of an organism on the head-tail axis by specifying which parts of the body - such as head, thorax or abdomen - the different segments of an embryo will form. They were surprised to find out that this wasn't the case, as they discovered that the ocean sunfish possessed HOX gene clusters similar to that of pufferfish.

Focusing on the genetic background of the ocean sunfish's fast growth rate and unusual body shape, the researchers also discovered that several genes involved in growth hormone signalling evolve very fast in the ocean sunfish when compared to other bony fishes, which may explain its large size and fast growth rate.

Unlike other bony fishes, the ocean sunfish's skeleton is largely made up of cartilage and not bone. Looking for clues to why this is the case, the researchers analysed genes that are known to be involved in bone formation.

Guojie Zhang, who is Associate Director at the China National Genbank and co-led the project, said: "We found changes in genes encoding for cartilage formation. This may contribute to the development of predominantly cartilaginous skeleton in this gigantic fish."

Identification of the genomic changes that underlie the ocean sunfish's unusual body shape, size and skeleton using this reference genome could facilitate future studies into the ocean sunfish and the genetic basis of its difference from other fishes, according to the researchers.

Byrappa Venkatesh said: "Vertebrates exhibit a wide diversity in their morphology, physiology and behaviour. Understanding the genetic basis of this diversity is a major goal of evolutionary biology. We still have a lot to learn from the ocean sunfish genome assembly. One way to pinpoint more genetic changes specific to ocean sunfish would be to sequence more closely related species such as porcupine fish, box fish, triggerfish, and triplespines."

Guojie Zhang added: "This is one of the 30 fish genomes that have been sequenced for the G10K project. The availability of high throughput DNA sequencing technology makes it possible to sequence whole genomes of a wide range of 'non-model' species, allowing us to uncover the genetic basis of their phenotypic diversity and their adaptation."
-end-
Media Contact
Anne Korn
Press Officer
BioMed Central
T: +44 (0)20 3192 2744
E: anne.korn@biomedcentral.com

Notes to editor:

1. Research article: The genome of the largest bony fish, ocean sunfish (Mola mola), provides insights into its fast growth rate
Hailin Pan, Hao Yu, Vydianathan Ravi, Cai Li, Alison P. Lee, Michelle M. Lian, Boon-Hui Tay, Sydney Brenner, Jian Wang, Huanming Yang, Guojie Zhang and Byrappa Venkatesh
GigaScience 2016
DOI: 10.1186/s13742-016-0144-3

For an image of the ocean sunfish or an embargoed copy of the research article please contact Anne Korn at BioMed Central.

After the embargo lifts, the article will be available at journal website here: http://gigascience.biomedcentral.com/articles/10.1186/s13742-016-0144-3

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

2. GigaScience aims to revolutionize reproducibility of analyses, data dissemination, organization, understanding, and use. As an open access and open-data journal, we publish all research objects (data, software tools and workflows) from 'big data' studies across the entire spectrum of life and biomedical sciences.

3. BioMed Central is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Nature, a major new force in scientific, scholarly, professional and educational publishing, created in May 2015 through the combination of Nature Publishing Group, Palgrave Macmillan, Macmillan Education and Springer Science+Business Media. http://www.biomedcentral.com

BioMed Central

Related Genome Articles:

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.
Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.
A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.
How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.
Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.
Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.
Why do we need one pair of genome?
Scientists have unraveled how the cell replication process destabilizes when it has more, or less, than a pair of chromosome sets, each of which is called a genome -- a major step toward understanding chromosome instability in cancer cells.
A new genome for regeneration research
The first complete genome assembly of planarian flatworm reveals a treasure trove on the function and evolution of genes.
Decoding the Axolotl genome
The sequencing of the largest genome to date lays the foundation for novel insights into tissue regeneration.
The Down's syndrome 'super genome'
Only 20 percent of foetuses with trisomy 21 reach full term.
More Genome News and Genome Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab