Nav: Home

New mouse model technology could speed the search for an AIDS vaccine

September 08, 2016

Researchers at Boston Children's Hospital have developed a technology to quickly generate mouse models for testing and tweaking potential HIV vaccines. Such models could speed up the quest for the AIDS field's "holy grail"-- a vaccine that elicits broadly neutralizing antibodies able to fight any mutant HIV strain. Findings are published September 8 in the journal Cell.

HIV frequently changes its coat protein, eluding the human immune system's efforts to neutralize it. While a handful of HIV-infected people can produce broadly neutralizing HIV antibodies, this usually results from years of exposure to the virus, allowing the immune system to modify antibodies to catch up with viral changes. People first make precursor antibodies, which then mature via mutation and natural selection, becoming more protective over time.

"This is a long-term process, involving many intermediate antibodies, making it very challenging to design HIV vaccines to protect uninfected individuals," says Frederick Alt, PhD, director of the Program in Cellular and Molecular Medicine at Boston Children' Hospital, co-senior author on the paper with John Mascola, MD, director of the NIAID's Vaccine Research Center (VRC).

"Only a small fraction of patients are able to develop broadly neutralizing antibodies, and by the time they do, the virus has already integrated into the genomes of the patient's T-cells," says Ming Tian, PhD, co-first author on the paper with Cheng Cheng, Xuejun Chen and Hongying Duan, of the NIAID's Vaccine Research Center (VRC), and Hwei-Ling Cheng of the Alt Lab.

So the researchers began with the question: How do broadly neutralizing antibodies naturally arise in HIV infected individuals? And how can we recapitulate that process to create an effective vaccine?

"To facilitate this effort, we wanted to design a new type of humanized mouse model that would be more physiological and also allow us to very quickly test new vaccination strategies," said Alt.

Building a diverse immune repertoire

The Boston Children's team began with the basic components of the known human antibody response to HIV. Antibody genes are assembled from building blocks known as V, D and J segments. Through various V-D-J combinations, our B lymphocytes are able to produce enormous numbers of different antibodies, enough that almost any invader can be recognized. After a B cell recognizes a pathogen, it further mutates the V-D-J sequence, often in successive steps, enabling its progeny B cells to produce even stronger antibodies.

Prior work had elucidated the structure of broadly neutralizing antibodies against HIV and deduced the V-D-J combinations that constituted their precursors. The team inserted the corresponding DNA into mouse embryonic stem cells.

Using approaches derived from prior work by the Alt Lab, the researchers then used the modified embryonic stem cells to rapidly generate mice whose B cells could assemble a highly diverse set of HIV antibody precursors, using the human precursor broadly neutralizing antibody "V" segment with various D or J segments.

An iterative process

The VRC group, with collaborators at the Duke Human Vaccine Institute, the Scripps Research Institute, the Fred Hutchinson Cancer Research Institute and other centers, then sequentially exposed the Alt Lab's test mice to a series of specially designed HIV antigens. While the mice began by making immature "ancestor" antibodies, this sequential vaccination approach "taught" their B cells to produce ever more diverse and effective humanized antibodies that eventually were able to neutralize some HIV viral strains.

"Rather than go through generations of mouse breeding to make models, our approach allows us to quickly delete and replace genomic elements to create changes in B cells," explains Alt. "Thus, we can rapidly re-program this mouse model with the intermediate antibody genes selected from the first successful immunizations, and expose them to new antigens. Over time, we hope this process will lead to the generation of broadly neutralizing HIV antibodies."

As the engineered antigens engaged the system, upping the ante each time, the researchers could observe the antibodies acquiring mutations.

"You move the B cells in a direction and find out what works and the potential hangups," says Alt. "You then work to figure out how to next adapt the mouse model and the immunogens to eventually get to a broadly neutralizing antibody stage."

There's still a long way to go, but Alt believes the technology could hasten the search for a truly effective HIV vaccine, as well as vaccines against other viruses. It may also allow researchers to generate highly specific therapeutic antibodies. "We're hoping it will be broadly useful," Alt says.
-end-
The study was supported by the National Institutes of Health and the National Institute of Allergy and Infectious Diseases (R01AI077595, AI020047, P01 AI094419 U19 AI109632); the NIH Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID) (AI100645, 5UM1AI100645, 1UM1 AI100663); the International AIDS Vaccine Initiative Neutralizing Antibody Consortium and Center; CAVD funding for the IAVI NAC Center; the Ragon Institute of MGH, MIT and Harvard; the VRC; and the Howard Hughes Medical Institute.

Boston Children's Hospital is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 1,100 scientists, including seven members of the National Academy of Sciences, 11 members of the Institute of Medicine and 10 members of the Howard Hughes Medical Institute comprise Boston Children's research community. Founded as a 20-bed hospital for children, Boston Children's today is a 404-bed comprehensive center for pediatric and adolescent health care. Boston Children's is also the primary pediatric teaching affiliate of Harvard Medical School. For more, visit our Vector and Thriving blogs and follow us on our social media channels: @BostonChildrens, @BCH_Innovation, Facebook and YouTube.

Boston Children's Hospital

Related Hiv Articles:

Defective HIV proviruses reduce effective immune system response, interfere with HIV cure
A new study finds defective HIV proviruses, long thought to be harmless, produce viral proteins and distract the immune system from killing intact proviruses needed to reduce the HIV reservoir and cure HIV.
1 in 7 people living with HIV in the EU/EEA are not aware of their HIV status
Almost 30,000 newly diagnosed HIV infections were reported by the 31 European Union and European Economic Area (EU/EEA) countries in 2015, according to data published today by ECDC and the WHO Regional Office for Europe.
Smoking may shorten the lifespan of people living with HIV more than HIV itself
A new study led by researchers at Massachusetts General Hospital finds that cigarette smoking substantially reduces the lifespan of people living with HIV in the US, potentially even more than HIV itself.
For smokers with HIV, smoking may now be more harmful than HIV itself
HIV-positive individuals who smoke cigarettes may be more likely to die from smoking-related disease than the infection itself, according to a new study published in the Journal of Infectious Diseases.
Patients diagnosed late with HIV infection are more likely to transmit HIV to others
An estimated 1.2 million people live with HIV in the United States, with nearly 13 percent being unaware of their infection.
The Lancet HIV: New HIV infections stagnating at 2.5 million a year worldwide
A major new analysis from the Global Burden of Disease 2015 study, published today in The Lancet HIV journal, reveals that although deaths from HIV/AIDS have been steadily declining from a peak in 2005, 2.5 million people worldwide became newly infected with HIV in 2015, a number that hasn't changed substantially in the past 10 years.
NIH scientists discover that defective HIV DNA can encode HIV-related proteins
Investigators from the National Institutes of Health have discovered that cells from HIV-infected people whose virus is suppressed with treatment harbor defective HIV DNA that can nevertheless be transcribed into a template for producing HIV-related proteins.
Study examines risk of HIV transmission from condomless sex with virologically suppressed HIV infection
Among nearly 900 serodifferent (one partner is HIV-positive, one is HIV-negative) heterosexual and men who have sex with men couples in which the HIV-positive partner was using suppressive antiretroviral therapy and who reported condomless sex, during a median follow-up of 1.3 years per couple, there were no documented cases of within-couple HIV transmission, according to a study appearing in the July 12 issue of JAMA, an HIV/AIDS theme issue.
HIV vaccine design should adapt as HIV virus mutates
Researchers from UAB, Emory and Microsoft demonstrate that HIV has evolved to be pre-adapted to the immune response, worsening clinical outcomes in newly infected patients.
Charlie Sheen's HIV disclosure may reinvigorate awareness, prevention of HIV
Actor Charlie Sheen's public disclosure in November 2015 that he has the human immunodeficiency virus (HIV) corresponded with the greatest number of HIV-related Google searches ever recorded in the United States, according to an article published online by JAMA Internal Medicine.

Related Hiv Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...