Nav: Home

With MRI technique, brain scientists induce feelings about faces

September 08, 2016

PROVIDENCE, R.I. [Brown University] -- Volunteers who started an experiment feeling neutral about certain faces they saw ended up unknowingly adopting the feelings that scientists induced via an MRI feedback technique, according to newly published research.

The study in PLOS Biology therefore suggests that there is a single region of the brain where both positive and negative feelings for faces take shape and provides the second demonstration this year that the MRI technique can be used to train a mental process in an unknowing subject. This spring, the team used the same method to associate the perception of color with the context of a pattern so strongly that volunteers saw the color when cued by the pattern, even if the color wasn't really there.

In the new study, the researchers sought to determine whether they could direct feelings about faces -- a more sophisticated brain function that is closer to their eventual goal, which is to develop the technique to the point where it could become a tool for psychological therapy, for instance for anxiety.

"Face recognition is a very important social function for people," said co-author Takeo Watanabe, the Fred M. Seed Professor of Cognitive and Linguistic Sciences at Brown University. "Facial recognition is associated with people's emotions."

Decoded neurofeedback explained

The technique, which the researchers call "DecNef," for decoded neurofeedback, starts with detecting and analyzing the specific activity patterns in a brain region that correspond to a mental state. For example, at the beginning of the new study, while 24 volunteers saw hundreds of faces and rated their sentiments about each of them (on a scale of 1 for dislike to 10 for like, with 5 for neutral), the researchers used MRI to record the patterns of activity in a brain region called the cingulate cortex.

That step alone was fairly conventional neuroscience except that many scientists believe that positive or negative feelings about faces are formulated in separate brain regions. But this team of four researchers at Brown University and the Advanced Telecommunications Research Institute International in Kyoto, Japan, wanted to test whether the cingulate cortex handles both sides of the emotion.

Sure enough, the researchers' software, called a decoder, was able to analyze the recordings to identify reliable and distinct patterns in each volunteer's cingulate cortex associated with positive and negative feelings about faces.

"We found that the cingulate cortex seems to handle both opposing directions with different activity patterns," said co-author Yuka Sasaki, associate professor (research) of cognitive, linguistic and psychological sciences at Brown.

With these signature patterns established for each volunteer, the participants were then unknowingly divided into two groups of 12 -- either positive or negative -- and were called back in for a few days of additional research in the MRI machine. In this phase the subjects were shown a subset of the faces they rated as neutral and were then asked to perform a seemingly unrelated task: After seeing each face on the screen, they were then shown a disk and asked to somehow use their minds to try to make it appear as big as possible. The bigger they could make the disk, they were told, the more of a small monetary reward they could receive.

In reality, the tasks weren't unrelated. Participants didn't know this at the time, but the only way the disk would grow was when the MRI readings showed that they happened (for whatever reason) to produce their signature patterns of positive or negative feelings about faces in their cingulate cortex. In other words, the experiment rewarded volunteers in the positive group with a larger disk when they produced the pattern associated with liking the faces after seeing a previously neutral one. Similarly, the experiment rewarded volunteers in the negative group with a growing disk the more they happened to produce the pattern associated with dislike after seeing a neutral one.

In essence, DecNef aims to train people to produce specific feelings or perceptions in specific contexts by rewarding those moments when they unknowingly do so.

A third group of six other participants was used as a control group. They saw faces and rated them, but were not given the DecNef step of having to enlarge a disk in association with the activation patterns that represent positive or negative feelings.

Finally, all the participants were then queried anew about their feelings regarding the initially neutral faces.

Facial feelings were affected

When the researchers analyzed the results, they were able to make several key findings. On average, the positive group's ratings of the neutral faces moved up mildly but significantly (by about 0.6 on the 1 to 10 scale), while the negative group's ratings of the faces moved down a bit less but still significantly. Meanwhile the control group's ratings didn't change significantly at all.

"From all these results we conclude that association of originally neutrally rated faces with covert induction of activity patterns in the single brain region, the cingulate cortex, led to changes in facial preference specifically for those faces, and in a specific preference -- positive or negative -- direction," the authors wrote in the study.

To be as certain as possible about the findings, they did a few more analyses. In post-experiment interviews, they asked the subjects whether they knew what was really going on -- none did. Then the researchers explained what the experiment was really about and asked people to say whether they thought they were in the positive or negative group. People were no better than chance at saying which they were in. Together these results suggest that none of the experimental volunteers changed their preferences about neutral faces based on their own will or intention.

In another analysis, the researchers crunched the numbers to see if the degree of activity in the cingulate cortex during the disk-enlargement phase correlated with the degree of change in preferences. The results revealed a high correlation (0.78 out of 1). In other words, the amount of brain activity was proportional to the amount of induced feeling.

Toward a DecNef therapy

While the induced changes in feeling were mild, the training took place over only a few days, the researchers noted. Training that occurs on the scale of weeks, as is often required for clinical therapies, might have induced stronger feelings.

But even a small effect could be beneficial for people if it blunts a persistently painful feeling associated with a certain trigger, Watanabe said.

"If someone develops a traumatic memory that makes him or her suffer, even a small reduction of the suffering would be helpful," Watanabe said.

The researchers also said they are aware that there could be potential abuse or misuse of the technique -- a kind of brainwashing -- so it might be good if it proves at least somewhat limited in its effect.

In addition to Sasaki and Watanabe, the paper's other authors are lead author Kazuhisa Shibata and corresponding author Mitsuo Kawato.

Brown University

Related Brain Articles:

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Producer Tracie Hunte stumbled into a duet between Nina Simone and the sounds of protest outside her apartment. Then she discovered a performance by Nina on April 7, 1968 - three days after the assassination of Dr. Martin Luther King Jr. Tracie talks about what Nina's music, born during another time when our country was facing questions that seemed to have no answer, meant then and why it still resonates today.  Listen to Nina's brother, Samuel Waymon, talk about that April 7th concert here.