Nav: Home

Training human antibodies to protect against HIV

September 08, 2016

During HIV infection, the virus mutates too rapidly for the immune system to combat, but some people produce antibodies that can recognize the virus even two years after infection. With an eye towards developing a vaccine, in four related papers from multiple groups publishing September 8 in Cell and Immunity, researchers describe a multi-step method for "training" the immune system to produce these antibodies in genetically engineered mice.

These broadly neutralizing antibodies can recognize many different iterations of the virus. "They are not capturing only the first or second version of the virus that they ran into," says Michel Nussenzweig, a molecular immunologist at The Rockefeller University and co-senior author on two of the studies. "They retain the ability to catch all of the virus mutations they've seen before."

When produced naturally, these antibodies don't pack enough punch to cure the systemic infection, but they could be strong enough to prevent the infection if induced by a vaccine. As a conceptual test, using mice genetically engineered to simulate the human immune system, the research teams devised a way to train the immune system and produce a class of antibodies called PGT121 that react to diverse strains of HIV.

The human immune system contains multiple different precursors, only a few of which could give rise to PGT121 antibodies, so the researchers first had to genetically analyze the antibodies to determine what their naive state likely was. Then, led by immunologist and co-senior author William Schief at the Scripps Research Institute, they created a series of viral protein structures, starting from HIV and working backwards, that could eventually teach the antibodies to recognize multiple forms of the natural HIV.

"The antibody precursors, or what we estimate as their precursors, don't seem to have detectable affinity themselves for the virus," says Schief. "We needed to convert HIV into something stable that would kickstart the process." The development of these structures is highlighted in the Immunity paper. At the end of this design process, the researchers had a sequence of modified immunogens to act as stepping stones to guide the antibodies' development.

Nussenzweig's team further tested the iterative training process using genetically engineered mice. Rather than producing the spectrum of antibodies normally found in the mouse immune system, these animals only produced the human precursors that could generate PGT121 antibodies. The researchers started with the first synthetic immunogen developed by Schief that could bind the PGT121 precursor and then tested the mouse serum to see if any antibodies also reacted to the next immunogen in the sequence, getting closer in a step-by-step fashion to natural HIV.

The process worked, and the team successfully matured a broadly neutralizing antibody in mice that resembled those found in HIV-infected individuals. However, Schief and Nussenzweig emphasize that their work offers a conceptual framework to develop a vaccine, rather than the vaccine itself. "We have done this in a very contrived mouse model," says Nussenzweig. "In a normal mouse--or a normal human--the immune system has a huge repertoire, and the antibody precursors that we're looking for are only a small fraction. If we put the same initial immunogen in a wild-type animal, it's very unlikely that enough of the immunogen would find the right precursors to get the whole thing started."

But, says Schief, "You have to start somewhere. This is a big step forward--we have shown that it's possible to guide antibody maturation from a human germline to produce broadly neutralizing antibodies by vaccination."

Now, with their established principles in hand for HIV vaccine development, the next step is to develop immunogens that have high affinity for the antibody precursors that are actually present in humans (which may differ from the one engineered into the mouse model). This next advance will allow the vaccine to locate and train the right parts of the human immune system in a naturally diverse environment.

A Mouse Model for Quickly Testing HIV Vaccines

In a related Cell paper, also publishing September 8, researchers at Boston Children's Hospital and the National Institute of Allergy and Infectious Diseases show how to quickly generate a humanized mouse model for testing new HIV vaccination strategies. In their mouse model, B cells assemble a highly diverse set of HIV antibody precursors that can be taught to produce humanized antibodies capable of neutralizing some HIV viral strains.

"Rather than go through generations of mouse breeding to make models, our approach allows us to quickly delete and replace genomic elements to create changes in B cells," says co-senior author Fred Alt, director of the Program in Cellular and Molecular Medicine at Boston Children' Hospital. "Thus, we can rapidly re-program this mouse model with the intermediate antibody genes selected from the first successful immunizations and expose them to new antigens. We're hoping it will be broadly useful."

"We need to further understand how to engender optimal antibody affinity maturation to evolve the antibody response toward effective virus neutralization," adds Director of the NIAID's Vaccine Research Center John Mascola, also co-senior author on the paper. "But these types of questions can be partially addressed in our humanized mouse models, to help select vaccine antigens and immunization strategies for phase I human studies."
-end-
Cell, Escolano and Steichen et al.: "Sequential Immunization Elicits Broadly Neutralizing anti-HIV-1 Antibodies in Ig Knock-in Mice" http://www.cell.com/cell/fulltext/S0092-8674(16)30976-X / DOI:10.1016/j.cell.2016.07.030

Cell, Briney, Sok, Jardine, Kulp, and Skog et al.: "Tailored Immunogens Direct Affinity Maturation toward HIV Neutralizing Antibodies" http://www.cell.com/cell/fulltext/S0092-8674(16)31054-6 / DOI:10.1016/j.cell.2016.08.005

Cell, Tian, Cheng, Chen, Duan and Cheng et al.: "Induction of HIV Neutralizing Antibody Lineages in Mice with Diverse Precursor Repertoires" http://www.cell.com/cell/fulltext/S0092-8674(16)30975-8 / DOI:10.1016/j.cell.2016.07.029

Immunity, Steichen, Kulp, Tokatlian, and Escolano et al.: "HIV Vaccine Design to Target Germline Precursors of Glycan-Dependent Broadly Neutralizing Antibodies" http://www.cell.com/immunity/fulltext/S1074-7613(16)30340-5 / DOI:10.1016/j.immuni.2016.08.016

Cell (@CellCellPress), the flagship journal of Cell Press, is a bimonthly journal that publishes findings of unusual significance in any area of experimental biology, including but not limited to cell biology, molecular biology, neuroscience, immunology, virology and microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. Visit: http://www.cell.com/cell. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Immune System Articles:

The immune system may explain skepticism towards immigrants
There is a strong correlation between our fear of infection and our skepticism towards immigrants.
New insights on how pathogens escape the immune system
The bacterium Salmonella enterica causes gastroenteritis in humans and is one of the leading causes of food-borne infectious diseases.
Understanding how HIV evades the immune system
Monash University (Australia) and Cardiff University (UK) researchers have come a step further in understanding how the human immunodeficiency virus (HIV) evades the immune system.
Carbs during workouts help immune system recovery
Eating carbohydrates during intense exercise helps to minimise exercise-induced immune disturbances and can aid the body's recovery, QUT research has found.
A new model for activation of the immune system
By studying a large protein (the C1 protein) with X-rays and electron microscopy, researchers from Aarhus University in Denmark have established a new model for how an important part of the innate immune system is activated.
Guards of the human immune system unraveled
Dendritic cells represent an important component of the immune system: they recognize and engulf invaders, which subsequently triggers a pathogen-specific immune response.
How our immune system targets TB
Researchers have seen, for the very first time, how the human immune system recognizes tuberculosis (TB).
How a fungus inhibits the immune system of plants
A newly discovered protein from a fungus is able to suppress the innate immune system of plants.
A new view of the immune system
Pathogen epitopes are fragments of bacterial or viral proteins. Nearly a third of all existing human epitopes consist of two different fragments.
TB tricks the body's immune system to allow it to spread
Tuberculosis tricks the immune system into attacking the body's lung tissue so the bacteria are allowed to spread to other people, new research from the University of Southampton suggests.

Related Immune System Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...