Nav: Home

The history of beer yeast

September 08, 2016

Today's industrial yeast strains are used to make beer, wine, bread, biofuels, and more, but their evolutionary history is not well studied. In a Cell paper publishing September 8, researchers describe a family tree of these microbes with an emphasis on beer yeast. The resulting genetic relationships reveal clues as to when yeast was first domesticated, who the earliest beer brewers were, and how humans have shaped this organism's development.

"The flavor of the beer we drink largely depends on yeast," explains Kevin Verstrepen, a yeast geneticist at the University of Leuven and VIB in Belgium. "We're drinking the best beers now because ancient brewers were smart enough to start breeding yeast before they knew what they were doing. It was really an art."

With a team of bioinformaticians led by Steven Maere, a computational biologist at VIB and Ghent University, and beer scientists from White Labs in California, Verstrepen and his colleagues sequenced the genomes of 157 different strains of yeast used to make beer, wine, spirits, sake, bread, and bioethanol, as well as some used in research labs, to explore the species' evolutionary history. The researchers also experimentally tested traits such as stress tolerance to investigate the interaction between the genome and the yeast's behavior.

According to the analysis, the industrial yeast used today came from only a few ancestral strains. Five large groups separated out genetically, with strains mainly clustered together according to their industrial purpose. Geographic boundaries further divided each category: in one grouping of beer yeast, for example, the strains from Belgium and Germany were closely related, but separate from those in the UK and US.

Brewers use the same yeast to make different types of beer, so beverages such as ales or stouts didn't generally have separate strains associated with them. However, a few distinct strains were associated with beers that have very specific traits, such as the smoky clove-like flavor of German Hefeweizen beer.

Using the genomic data, the researchers traced the common ancestor of the industrial beer and wild yeasts to the 1500s--before the formal discovery of microbes. "If early brewers had a very good fermentation, they were smart enough to harvest the yeast sediment and use it to inoculate the next batch, even if they didn't know what was floating around in it," explains Verstrepen. "Reusing the microbes to make beer completely separated them from nature. The yeasts were evolving in the brewery."

The research team uncovered a number of genetic patterns related to the domestication process. Wild yeast can sexually reproduce during times of starvation or stress, but today's beer yeasts have lost this ability--they only have functional genes for asexual reproduction, likely due to their cushier living conditions. "They essentially became sterile," says Verstrepen.

"Four centuries of domestication have also left marks in beer yeast genomes associated with traits that are useful in a brewing environment," says Maere. "In various beer yeast lineages, specific genes have been amplified, deleted, or altered to optimize growth in beer fermenters and beer taste."

In particular, the researchers found evidence for amplification of genes involved in metabolizing typical beer sugars and selection against production of 4VG, an undesirable flavor compound produced by most natural yeasts. "As far as we know, there's no selective advantage in suppressing the production of 4VG" says Verstrepen. "It must have been the brewers saying, 'This tastes good, we're going to reuse it.'" Wine yeasts also displayed a genetic resistance to copper, which is used to fight fungal infections in the vineyard and can end up in the grape juices.

Verstrepen's team is continuing research to breed new yeast strains with characteristics useful to industry, and will soon be adding a brewery to the lab to conduct further experiments. "It's a short jump from working with yeast to trying to make better beer yeast," he says.
-end-
This study was supported by VIB, the Agency for Innovation by Science and Technology, KU Leuven, the Human Frontier Science Program, the European Molecular Biology Organization, the Research Foundation (Flanders), Ghent University, and the European Research Council.

Cell, Gallone and Steensels et al.: "Domestication and divergence of Saccharomyces cerevisiae beer yeasts" http://www.cell.com/cell/fulltext/S0092-8674(16)31071-6

Cell (@CellCellPress), the flagship journal of Cell Press, is a bimonthly journal that publishes findings of unusual significance in any area of experimental biology, including but not limited to cell biology, molecular biology, neuroscience, immunology, virology and microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. Visit: http://www.cell.com/cell. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Microbes Articles:

What can be learned from the microbes on a turtle's shell?
Research published in the journal Microbiology has found that a unique type of algae, usually only seen on the shells of turtles, affects the surrounding microbial communities.
Life, liberty -- and access to microbes?
Poverty increases the risk for numerous diseases by limiting people's access to healthy food, environments and stress-free conditions.
Rye is healthy, thanks to an interplay of microbes
Eating rye comes with a variety of health benefits. A new study from the University of Eastern Finland now shows that both lactic acid bacteria and gut bacteria contribute to the health benefits of rye.
Gut microbes may affect the course of ALS
Researchers isolated a molecule that may be under-produced in the guts of patients.
Gut microbes associated with temperament traits in children
Scientists in the FinnBrain research project of the University of Turku discovered that the gut microbes of a 2.5-month-old infant are associated with the temperament traits manifested at six months of age.
Gut microbes eat our medication
Researchers have discovered one of the first concrete examples of how the microbiome can interfere with a drug's intended path through the body.
Microbes can grow on nitric oxide
Nitric oxide (NO) is a central molecule of the global nitrogen cycle.
Microbes help make the coffee
When it comes to processing coffee beans, longer fermentation times can result in better taste, contrary to conventional wisdom.
Space microbes aren't so alien after all
A new Northwestern University study has found that -- despite its seemingly harsh conditions -- the ISS is not causing bacteria to mutate into dangerous, antibiotic-resistant superbugs.
Nutrient-recycling microbes may feel the heat
While microbial communities are the engines driving the breakdown of dead plants and animals, little is known about whether they are equipped to handle big changes in climate.
More Microbes News and Microbes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.