Nav: Home

Nijmegen breakage syndrome: Molecular pathways that lead to microcephaly

September 08, 2016

Scientists from Jerusalem and Duesseldorf have succeeded in generating induced pluripotent stem cells from a rare disorder called Nijmegen breakage syndrome (NBS) and to push these cells to become early neurons, revealing the mechanisms leading to the neurological phenotype observed in these patients.

Nijmegen breakage syndrome is a devastating disorder in which the affected children suffer from pronounced microcephaly, cognitive impairments, dwarfism, strong cancer predisposition, and immunodeficiency. The syndrome is caused when a child receives a mutant NBS1 gene from both his parents. It was known that the NBS1 gene is important for the recognition of breaks in the DNA of the child, explaining the cancer predisposition and immunodeficiency of the patients. However, it was not clear how this gene affects the development of the brain and why the affected children suffer from smaller brains. Therefore, the generation of induced pluripotent stem cells from patients and the ability to turn them into neurons, as published in the latest issue of the journal Cell Reports, gave scientists the opportunity to study the causes for brain impairment as seen in affected children.

Prof. Michal Goldberg and Prof. Nissim Benvenisty from the Hebrew University of Jerusalem, together with Prof. James Adjaye from the Heinrich Heine University in Duesseldorf, in a study led by graduate student Tomer Halevy, succeeded in generating induced pluripotent stem cells from two patients, a boy and a girl, carrying the syndrome, and looked at different characteristic of the cells. Previous studies to understand the disorder were performed on skin cells, and so the causes for the neural pathologies were unknown.

Surprisingly, in this study, the investigators found that P53, a gene with a well known role in preventing cancer may also be responsible for the neural phenotype of Nijmegen breakage syndrome. P53 was demonstrated to be a target of the NBS1 gene, and an emerging role for P53 in early neural development has been suggested. In this study, the researchers have found that since NBS1 is missing in patients' neurons P53 cannot work properly, this in turn leads to cancer development but also affects the early development of the nervous system.

According to Prof. Goldberg, a researcher from the Department of Genetic at the Hebrew University of Jerusalem and principal co-author of the study "Induced pluripotent stem cells derived from Nijmegen breakage syndrome patients provide a powerful tool to study different aspects of the disease, mainly the neural phenotype, as we are able to turn these cells into neural cells and study the developmental aspects of the disorder that could not have been studied before. We can now zoom in and detect dysregulated molecular pathways in neuron derived from patient cells and understand how they affect the children with the disorder. Furthermore, since many diseases resulting from mutations in genes that are important for genomic stability show apart from cancer predisposition also neurological phenotypes, our findings may serve as a platform for the study of additional genomic stability syndromes and pave the way for elucidating the crosstalk between genomic stability and neurological impairments".

Two great advantages of induced pluripotent cells that carry the disorder have on previously used cells, are their ability to become any cell type that we want to study, and their limitless replication potential. We can thus use these cells to perform drug screenings to test for compounds to correct some of the dysregulated pathways that we discovered to be involved in the development of the syndrome. This will be done in our case on derived neural cells but can be performed on any other cell type depending on the tissue we wish to treat.

The cells that were generated and the mechanism underlying the neural phenotype of Nijmegen breakage syndrome, which was discovered in this work will greatly facilitate in the search for a treatment for affected children and also in our understanding of related disorders associated with problems in DNA breaks recognition that have a similar neural phenotype.

According to Prof. Adjaye, Director of the Institute for stem cell research and regenerative medicine, the established and additional NBS induced pluripotent stem cell lines will serve as useful in vitro models to study the underlying mechanism(s) linking impaired neurogenesis to microcephaly by establishing NBS-derived brain organoids and comparing these to organoids derived from healthy individuals.
The research was supported by the Israel Science Foundation (grant no. 684/13) to M.G., and by the Israel Science Foundation (grant no. 269/12), the Israel Science Foundation-Morasha Foundation (grant number 1252/12), the Rosetrees Trust, and the Azrieli Foundation to N.B. J.A. acknowledges support from the Medical Faculty of the Heinrich Heine University Düsseldorf, Germany

Publication: Tomer Halevy,Shira Akov, Martina Bohndorf, Barbara Mlody, James Adjaye, Nissim Benvenisty and. Michal Goldberg (2016). Chromosomal Instability and Molecular Defects in Induced Pluripotent Stem Cells from Nijmegen Breakage Syndrome Patients. Cell Reports 16, 1-13

Heinrich-Heine University Duesseldorf

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.